首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vulnivaccine, a vaccine against vibriosis caused by Vibrio vulnificus serovar E (formerly biotype 2), confers acceptable levels of protection to eels after its administration by prolonged immersion in three doses. Recently, a new pathogenic serovar, named serovar A, has been isolated from vaccinated eels in a Spanish freshwater eel farm. The main objective of this work was to design a bivalent vaccine, and to study its effectiveness against the two pathogenic serovars. With this aim, eels weighing around 20 g were immunised with the bivalent vaccine by oral and anal intubation, intraperitoneal injection (i.p.) and prolonged immersion. The overall results indicated that: (i) the new vaccine delivered by oral and anal intubation induced protection levels higher than 80%, to that achieved after i.p. vaccination; (ii) oral and anal vaccination induced a significant systemic and mucosal immune response; (iii) the protection after vaccination by whichever routes was related to antibody titres in plasma; (iv) mucosal and systemic compartments showed different kinetics of antibody production; (v) evidence for passive transfer of antibodies from plasma to gut mucus were found after i.p. and anal vaccination, and finally, (vi) vaccination did not enhance the production of lysozyme, in plasma or mucus. In conclusion, this new vaccine is effective in protecting eels against vibriosis caused by the two eel-pathogenic serovars of V. vulnificus, the oral delivery system is a promising way which may be used in intensive culture facilities during the whole growth period of eels.  相似文献   

2.
Vibriosis due to Vibrio vulnificus serovar E (biotype 2) is one of the main causes of mortality in European eels cultured in Europe. The main objective of this study was to develop a vaccine and a vaccination procedure against this pathogen. With this aim, we tested several vaccine formulations (inactivated whole-cells with and without toxoids--inactivated extracellular products--from capsulated and uncapsulated strains, attenuated live vaccines and purified lipopolysaccharide [LPS]) on eels maintained under controlled laboratory conditions using different delivery routes (injection and immersion). To study the immune response we estimated antibody titers and bactericidal/bacteriostatic activity in mucus and serum. To evaluate protection, we calculated the relative percent survival (RPS) after intraperitoneal (i.p.) injection and bath challenge of the pathogen. The overall results indicate that: (1) capsular antigens seem to be essential for protective immunization; (2) vaccines confer the highest protection when administered by i.p. injection; (3) booster is needed to achieve good protection by immersion; (4) enriching the vaccine with toxoids enhances protection to optimal levels (RPS values around 70 to 100%, depending on the delivery route); and (5) the protective effect in serum and mucus depends on the route of administration and seems to be related to the production of specific antibodies.  相似文献   

3.
The virulence for eels of Vibrio vulnificus biotype 2 serovar E (VSE) is conferred by a plasmid that codifies ability to survive in eel serum and cause septicaemia. To find out whether the plasmid and the selected chromosomal gene vvp plays a role in the initial steps of infection, the VSE strain CECT4999, the cured strain CT218 and the Vvp-deficient mutant CT201 (obtained in this work by allelic exchange) were used in colonization and virulence experiments. The eel avirulent biotype 1 (BT1) strain YJ016, whose genome has been sequenced, was used for comparative purposes. The global results demonstrate that the plasmid does not play a significant role in surface colonization because (i) CECT4999 and CT218 were equally chemoattracted towards and adherent to eel mucus and gills, and (ii) CT218 persisted in gills from bath-infected eels 2 weeks post infection. In contrast, mutation in vvp gene reduced significantly chemoattraction and attachment to eel mucus and gills, as well as virulence degree by immersion challenge. Co-infection experiments by bath with CECT4999 and CT201 confirmed that Vvp was involved in eel colonization and persistence in gills, because CECT4999 was recovered at higher numbers compared with CT201 from both internal organs of moribund fish (ratio 4:1) and gills from survivors (ratio 50:1). Interestingly, YJ016 also showed chemoattraction and attachment to mucus, and complementation of CT201 with BT1- vvp gene restored both activities together with virulence degree by immersion challenge. Additional experiments with algae mucus and purified mucin gave similar results. In conclusion, the protease Vvp of V. vulnificus seems to play an essential role in colonization of mucosal surfaces present in aquatic environments. Among the V. vulnificus strains colonizing fish mucus, only those harbouring the plasmid could survive in blood and cause septicaemia.  相似文献   

4.
Flavobacterium columnare is a Gram-negative pathogen of many species of wild and cultured fish. Isolates from diseased channel catfish belong to either genomovar I or II. Genomovar II isolates were found to be more virulent than genomovar I isolates. The objective of the present study was to determine whether differences exist in the chemotactic response of these genomovars to mucus obtained from the skin, gills and intestines of healthy channel catfish using the capillary chemotaxis assay. Mucus from the skin and gill induced a greater chemotactic response by F. columnare than mucus from the intestine. Sixty percent of mucus from the skin of individual catfish yielded a positive chemotactic response from F. columnare. Finally, skin mucus induced a greater chemotactic response in genomovar II F. columnare than in genomovar I F. columnare isolates. The data indicate that mucus from channel catfish results in a chemotactic response by F. columnare. This positive chemotactic response may be an important first step for F. columnare colonization of channel catfish skin or gills. Although the role that chemotaxis plays in the virulence of F. columnare is not fully defined, the chemotactic response of genomovar ll isolates suggests that chemotaxis is associated with virulence.  相似文献   

5.
Mucosal surfaces of fish, including skin, gill and gut, contain numerous immune substances poorly studied that act as the first line of defence against a broad spectrum of pathogens. This study aimed to identify and characterize for the first time different constitutive humoral defence mechanisms of the skin mucus of gilthead seabream (Sparus aurata). To do this, the levels of total immunoglobulin M, several enzymes and proteins (peroxidase, lysozyme, alkaline phosphatase, esterases, proteases and antiproteases), as well as the bactericidal activity against opportunist fish pathogens (Vibrio harveyi, Vibrio angillarum, Photobacterium damselae) and non-pathogenic bacteria (Escherichia coli, Bacillus subtilis) were measured in the skin mucus and compared with those found in the serum. This study demonstrates that gilthead seabream skin mucus contains lower levels of IgM, similar levels of lysozyme, alkaline phosphatase and proteases, and higher esterase, peroxidase and antiprotease activities than serum. In addition, skin mucus revealed stronger bactericidal activity against tested fish pathogen bacteria compared to the serum activity, while human bacteria can even grow more in the presence of mucus. The results could be useful for better understanding the role of the skin mucus as a key component of the innate immune system with potential application for the aquaculture.  相似文献   

6.
Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed that V. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.  相似文献   

7.
Vibrio vulnificus biotype 2 serovar E (VSE) is a bacterial pathogen that produces a haemorrhagic septicaemia called vibriosis in eels. Its ability to grow in blood is conferred by a recently described virulence plasmid [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.]. In this study, we analyzed the role of this plasmid together with the role played by the metalloprotease (Vvp) in the interaction between bacteria and eel innate immunity. To this end, we compared and statistically analyzed the differences in resistance to serum and mucus factors (complement, selected antimicrobial peptides, transferrin and lysozyme) and also to phagocytosis/opsonophagocytosis between one VSE strain and its derivatives: a plasmid-cured strain and a vvp-deficient mutant. The wild-type and the metalloprotease-deficient strains were resistant to both the bactericidal action of fresh serum and the phagocytosis and opsonophagocytosis by eel phagocytes, confirming that Vvp is not involved in resistance to eel innate immunity. In contrast, the cured strain was sensitive to both the bactericidal action of eel serum activated by the alternative pathway and phagocytosis/opsonophagocytosis. Since no plasmid-encoded ORF, with homology to known genes, is related to the resistance to innate immunity [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.], this function could be codified by one or more new genes. Further studies are underway to characterize the plasmid-encoded system responsible for V. vulnificus resistance to the innate immune system of eels.  相似文献   

8.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

9.
The use of different schemes of albino mice immunization either by living or by killed preparations of the vaccine strain of Francisella tularensis when obtaining monoclonal antibodies to the tularemia microbe made it possible to reveal definite regularities in the dynamics of antibody formation. The highest titres of antibodies in sera of animals-donors of splenocytes were obtained during the daily (for 3 days) intraperitoneal immunization of mice with living vaccine or with its thrice administration to the spleen thrice with the interval of 10 days. Revaccination against a background of high titres of antibodies decreased their quantity in blood serum of mice, while that against a background of low titres increased them.  相似文献   

10.
The immune response of the mouse to priming and booster doses of V. cholerae was studied to establish whether serum antibody could be used as a correlate of local immunity. Serum antibody titres following oral boosting of orally-primed animals were shown to reflect the state of local intestinal immunity. This was not the case when the same oral booster dose was given to parenterally-primed animals. These results were discussed in relation to the human endemic situation. The highest titres of intestinal protective antibodies were found following combination of the oral and parenteral routes of immunisation. Various killed or extracted preparations of V. cholerae were used as oral vaccines to test their ability to induce protective antibodies in the gut. Only Boivin antigen was capable of inducing as good an intestinal antibody response as would the living organism.  相似文献   

11.
Serum and cutaneous mucus antibodies were monitored in white sturgeon for 15 weeks following intraperitoneal immunization. Ten fish were immunized (50 microg) with white sturgeon iridovirus (WSIV) or white sturgeon gonad (WSGO) tissue culture cells emulsified with or without FCA. An additional group was immunized with FITC:KLH+FCA. Fish were booster immunized at 6 weeks. Fish immunized with FITC:KLH+FCA produced significant serum antibodies to FITC by 6 weeks and this response peaked at 12 weeks (average titer 31,000). Mucosal antibodies to FITC were first detected at 12 weeks and significantly elevated by 15 weeks (average titer 18). Anti-WSIV antibody titers were detected in the serum by 9 weeks in fish immunized with WSIV and WSIV+FCA, but only a small number responded to immunization. At 15 weeks, four fish immunized with WSIV produced serum antibodies (average titer 838) and one fish immunized with WSIV+FCA had a serum titer of 1600. Mucosal anti-WSIV antibody titers of 8 and 16 were observed in two fish from the WSIV group at 12 weeks while four different fish from this group responded at 15 weeks (average titer 4). Western Blot using a monoclonal antibody confirmed immunoglobulin in mucus, and specificity to WSIV was further demonstrated by immunocytochemistry using serum from fish immunized with WSIV. Specific antibody was not detected in mucus of fish immunized with WSIV+FCA, WSGO, or WSGO+FCA. Collectively, these experiments demonstrate that white sturgeon can generate a specific antibody response following immunization, and is the first report showing mucosal immunoglobulin is present in this species.  相似文献   

12.
Postmortem serum and vitreous humor specimens obtained from 31 autopsied human bodies were assayed for specific antibody responses to adenoviruses, RS virus and Mycoplasma pneumoniae using the complement-fixation (CF) test and the ELISA procedure (in 23 of the bodies examined). The antibody responses as measured by the CF test were negative in all vitreous body samples tested, with the ELISA five specimens gave a positive reaction at a titre 1 : 40 and one at 1 : 80. These positive antibody titres turned out to invariably coincide with the high-titre antibody levels in the serum. Implicitly, at high-titre levels in the serum these antibodies tend to penetrate in the vitreous body of the eye.  相似文献   

13.
Eighty sera from tuberculosis (TB) patients, 16 Indian and 10 American control sera were analyzed by ELISA for relative titres of antibody against mycobacterial antigens. Levels of specific antibody and mycobacterial Ag in circulating immune complexes (CIC) isolated from these sera were also studied. All these parameters were found to be elevated in TB sera as compared to control sera. Maximum increase was however noted in CIC specific antibody titres. A good correlation was observed between serum and CIC levels of specific antibody (r = 0.72) and between specific antigen (Ag) and antibody (Ab) levels within CIC (r = 0.64). In a few of the TB sera examined, CIC specific Ab contributed less than 1% to the Ab titres in sera. In order to examine the differences between different subgroups within TB patients, a statistical analysis of variance was performed. Sex of the patients had no effect on any parameter. Sputum-positive patients had significantly higher levels of CIC Ag and Ab than the sputum-negative patients, although no significant difference occurred in respect to serum Ab. All three parameters were significantly higher in patients on chemotherapy as compared to fresh untreated cases. The relevance of these observations to the development of a CIC-based immunodiagnostic assay for TB is discussed.  相似文献   

14.
Vibrio vulnificus was isolated in 1996 from 2 disease outbreaks on a Danish eel farm which used brackish water. A characteristic clinical sign was extensive, deep muscle necrosis in the head region. V. vulnificus was isolated from kidney, mucus, spleen, gill and intestine of diseased eels. Thirty-two isolates were examined phenotypically and serologically for pathogenicity to eels and for correlation to ribotype and plasmid profile. Biochemically, the isolates showed properties similar to those described previously for eel-pathogenic strains of V. vulnificus, with the exception of indole production. Virulence was evaluated by LD50 (the 50% lethal dose), which ranged from < 9.4 x 10(3) to 2.3 x 10(5) CFU (colony-forming units) per fish. The isolates which were lethal for eels showed identical ribotypes and serotypes. A relationship between certain plasmids and virulence was not found. A serotyping system based on lipopolysaccharide (LPS)-associated O antigen type and on carbohydrate capsule antigens showed that the eel-virulent isolates shared a common LPS-based homogeneous O serogroup and a capsule antigen. V. vulnificus serovar O4 and capsule type 9 was identical serologically to the Japanese isolate ATCC 33149 and was the agent responsible for the disease outbreaks that occurred on the Danish eel farm. Despite absence of antibiotic resistance, treatment had little effect and disease reoccurred.  相似文献   

15.
A method was devised to produce antibodies to lipopolysaccharide (LPS) in guinea-pigs following a single immunization. The antigen was prepared by mixing polymyxin B-agarose with LPS from Escherichia coli O55:B5. Use of the agarose support allowed purification of the complex by simple washing procedures. Twenty-nine days after a single injection of the immunogen mixed with Freund complete adjuvant all animals demonstrated antibody to the LPS portion of the complex. No antibodies were detected to the polymyxin B component. Typical titres of LPS as measured by ELISA were 2(11). After, a booster immunization, titres of LPS antibody were further increased and a greater avidity was noted. In contrast to other methods which have been employed for production of antibody to LPS, use of the polymyxin B-agarose complex has the following advantages: ease of antigen preparation, ready purification of the complex, potent immunostimulation, and under the conditions employed here, LPS-specific antibody production, without accompanying antibody to polymyxin B.  相似文献   

16.
Vibrio vulnificus biotype 2 is a primary pathogen for eels and, as has recently been suggested, an opportunistic pathogen for humans. In this study we have investigated the ability of V. vulnificus biotype 2 to obtain iron by siderophore-mediated mechanisms and evaluated the importance of free iron in vibriosis. The virulence degree for eels was dependent on iron availability from host fluids, as was revealed by a reduction in the 50% lethal dose for iron-overloaded eels. This biotype produced both phenolate- and hydroxamate-type siderophores of an unknown nature and two new outer membrane proteins of around 84 and 72 kDa in response to iron starvation. No alterations in lipopolysaccharide patterns were detected in response to iron stress. Finally, our data suggest that V. vulnificus biotype 2 uses the hydroxamate-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein.  相似文献   

17.
Diagnosis of myxosporean Myxobolus rotundus infection was conducted by examining skin mucus from the infected crucian carp Carassius auratus auratus with a monoclonal antibody, MAb 2D12, raised previously against the parasite. A positive reaction was observed in skin mucus collected from infected fish, and spores and pre-spore stages of the parasite were identified by the MAb 2D12. It was also demonstrated that M. rotundus infection can be successfully detected by a simple method, enzyme-linked immunosorbent assay (ELISA), and that skin mucus collected from infected fish skin had a significantly higher optical density (OD) value than that from uninfected fish.  相似文献   

18.
Concomitant infection of murine CMV (MCMV), an opportunistic respiratory pathogen, altered Th1/Th2 cytokine expression, decreased bronchoalveolar lavage (BAL) fluid eosinophilia, and increased mucus production in a murine model of OVA-induced allergic airway disease. Although no change in the total number of leukocytes infiltrating the lung was observed between challenged and MCMV/challenged mice, the cellular profile differed dramatically. After 10 days of OVA-aerosol challenge, eosinophils comprised 64% of the total leukocyte population in BAL fluid from challenged mice compared with 11% in MCMV/challenged mice. Lymphocytes increased from 11% in challenged mice to 30% in MCMV/challenged mice, and this increase corresponded with an increase in the ratio of CD8(+) to CD4(+)TCRalphabeta lymphocytes. The decline in BAL fluid eosinophilia was associated with a change in local Th1/Th2 cytokine profiles. Enhanced levels of IL-4, IL-5, IL-10, and IL-13 were detected in lung tissue from challenged mice by RNase protection assays. In contrast, MCMV/challenged mice transiently expressed elevated levels of IFN-gamma and IL-10 mRNAs, as well as decreased levels of IL-4, IL-5, and IL-13 mRNAs. Elevated levels of IFN-gamma and reduced levels of IL-5 were also demonstrated in BAL fluid from MCMV/challenged mice. Histological evaluation of lung sections revealed extensive mucus plugging and epithelial cell hypertrophy/hyperplasia only in MCMV/challenged mice. Interestingly, the development of airway hyperresponsiveness was observed in challenged mice, not MCMV/challenged mice. Thus, MCMV infection can modulate allergic airway inflammation, and these findings suggest that enhanced mucus production may occur independently of BAL fluid eosinophilia.  相似文献   

19.
DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen.  相似文献   

20.
Mucosal and serum antibody responses were studied in sibling barramundi (Lates calcarifer) acclimated in either seawater or freshwater following vaccination by intraperitoneal injection or direct immersion in an inactivated Streptococcus iniae vaccine. As expected, route of vaccination had a marked effect on immune response, with direct immersion resulting in low serum antibody levels against S. iniae by ELISA detected 21 days post vaccination at 26 degrees C, whilst a significant response was detected in mucus. A strong specific antibody response was detected in both mucus and serum 21 days following intraperitoneal injection. Fish acclimated in seawater prior to vaccination showed a markedly higher specific mucosal antibody response than sibling fish acclimated in freshwater, regardless of the route of vaccination, whilst the serum antibody response was not affected by salinity. Both mucosal and serum antibodies from fish in seawater and freshwater were capable of binding antigen at salinities similar to full strength seawater in a modified ELISA assay. These results indicate that this euryhaline fish species is not only able to mount significant specific antibody response in cutaneous mucus, but that these antibodies will function in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号