首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP.  相似文献   

2.
The insect integument displays uniform posterior orientation of cuticular denticles or bristles formed by the epidermal cells. We want to understand how cell polarities become uniformly oriented in the plane of the epidermal sheet. Here we test whether directed cell migration disturbs the orientation of denticles. Burning a circular area of epidermal cells beneath the cuticle causes cells to migrate into the resulting wound and the cuticle pattern observed after the subsequent moult depends on the time interval between burning and ecdysis. After a short wound-healing period cuticular protrusions tend to point away from the wound. With increasing would healing periods they tend to point more and more towards the wound centre. These results suggest that the migrating cells tend to orient cuticular protrusions in the direction of cell movement while continued cell movement will bend nascent cuticular protrusions outwards. Cell shape may also determine denticle orientation. I propose that the asymmetric localization of cell components known to determine the orientation of cell migration may also determine denticle orientation in insect epidermal cells.  相似文献   

3.
Summary The insect integument displays planar tissue polarity in the uniform orientation of polarized cuticular structures. In a body segment, for example, the denticles and bristles produced by the constituent epidermal cells point posteriorly. Colchicine can abolish this uniform orientation while still allowing individual cells to form orientated cuticular structures and thereby to express cell polarity. This suggests that an individual cell in a sheet can establish planar polarity without reference to some kind of covert supracellular cue (such as a morphogen gradient) in the epidermis as a whole. The results also indicate that colchicine interferes — directly or indirectly — with the mechanisms involved in aligning the polarity axes of individual cells into a common orientation, thereby generating supracellular or tissue polarity.  相似文献   

4.
Stability of polarity in the epidermis of a beetle, Tenebrio molitor L.   总被引:1,自引:0,他引:1  
S. Caveney   《Developmental biology》1973,30(2):321-335
Cell polarity in the insect epidermis may be coupled to the orientation of anisometric cuticle components. Rotation of squares of sternite epidermis in the larva results in a corresponding rotation in the highly ordered orientation of cuticle fibers in the adult “crossply” cuticle. The patterns of fiber orientation resulting from graft rotation can be explained by the presence of an axial gradient of positional information.The polarity of the rotated tissue is, however, not fixed. Interaction between the polarity of the graft and host tissue may result in a partial shift of graft polarity toward the axial polarity of the host tissue. This interaction is apparently restricted to a limited period of the cell cycle: cell division. In Tenebrio, the sternite epidermis proliferates only once during metamorphosis, 140–90 hr before pupation. Rotational grafts performed before, during, and after this period present a graded series of “relaxation” patterns in fiber orientation in the graft area. Maximal graft repolarization coincides with maximal cell division on the sternite. The epidermal gradient, or cell response to the gradient, appears to be nonlinear along the segment.If no cell division intervenes between graft rotation and fiber deposition, graft polarity remains stable. This stability necessitates a “memory” component in the epidermis. It is suggested that periodic assessment of tissue polarity occurs concomitant with a particular process of cell division.  相似文献   

5.
The proper orientation of mechanosensory hair cells along the lateral-line organ of a fish or amphibian is essential for the animal's ability to sense directional water movements. Within the sensory epithelium, hair cells are polarized in a stereotyped manner, but the mechanisms that control their alignment relative to the body axes are unknown. We have found, however, that neuromasts can be oriented either parallel or perpendicular to the anteroposterior body axis. By characterizing the strauss mutant zebrafish line and by tracking labeled cells, we have demonstrated that neuromasts of these two orientations originate from, respectively, the first and second primordia. Furthermore, altering the migratory pathway of a primordium reorients a neuromast's axis of planar polarity. We propose that the global orientation of hair cells relative to the body axes is established through an interaction between directional movement by primordial cells and the timing of neuromast maturation.  相似文献   

6.
The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.  相似文献   

7.
Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal–distal (P–D) axis by the Dachsous‐Fat‐Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P–D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.  相似文献   

8.
The process of oriented divisions of polarised cells is a recurrent mechanism of cell fate diversification in development. It is commonly assumed that a specialised mechanism of spindle alignment into the axis of polarity is a prerequisite for such systems to generate cell fate diversity. Oriented divisions also take place in the frog blastula, where orientation of the spindle into the apicobasal axis of polarised blastomeres generates inner and outer cells with different fates. Here, we show that, in this system, the spindle orients according to the shape of the cells, a mechanism often thought to be a default. We show that in the embryo, fatedifferentiative, perpendicular divisions correlate with a perpendicular long axis and a small apical surface, but the long axis rather then the size of the apical domain defines the division orientation. Mitotic spindles in rounded, yet polarised, isolated Xenopus blastula cells orient randomly, but align into an experimentally introduced long axis when cells are deformed early in the cell cycle. Unlike other systems of oriented divisions, the spindle aligns at prophase, rotation behaviour is rare and restricted to small angle adjustments. Disruption of astral microtubules leads to misalignment of the spindle. These results show that a mechanism of spindle orientation that depends on cell shape rather than cortical polarity can nevertheless generate cell fate diversity from a population of polarised cells.  相似文献   

9.
Cao Y  Shen D  Lu Y  Huang Y 《Annals of botany》2006,97(6):1091-1094
BACKGROUND AND AIMS: Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS: Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS: The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS: The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.  相似文献   

10.
Polarity of spindle microtubules in Haemanthus endosperm   总被引:12,自引:7,他引:5       下载免费PDF全文
Structural polarities of mitotic spindle microtubules in the plant Haemanthus katherinae have been studied by lysing endosperm cells in solutions of neurotubulin under conditions that will decorate cellular microtubules with curved sheets of tubulin protofilaments. Microtubule polarity was observed at several positions in each cell by cutting serial thin sections perpendicular to the spindle axis. The majority of the microtubules present in a metaphase or anaphase half-spindle are oriented with their fast-growing or "plus" ends distal to the polar area. Near the polar ends of the spindle and up to about halfway between the kinetichores and the poles, the number of microtubules with opposite polarity is low: 8-20% in metaphase and 2-15% in anaphase cells. Direct examination of 10 kinetochore fibers shows that the majority of these microtubules, too, are oriented with their plus ends distal to the poles, as had been previously shown in animal cells. Sections from the region near the spindle equator reveal an increased fraction of microtubules with opposite polarity. Graphs of polarity vs. position along the spindle axis display a smooth transition from microtubules of one orientation near the first pole, through a region containing equal numbers of the two orientations, to a zone near the second pole where the opposite polarity predominates. We conclude that the spindle of endosperm cells is constructed from two sets of microtubules with opposite polarity that interdigitate near the spindle equator. The length of the zone of interdigitation shortens from metaphase through telophase, consistent with a model that states that during anaphase spindle elongation in Haemanthus, the interdigitating sets of microtubules are moved apart. We found no major changes in the distribution of microtubule polarity in the spindle interzone from anaphase to telophase when cells are engaged in phragmoplast formation. Therefore, the initiation and organization of new microtubules, thought to take place during phragmoplast assembly, must occur without significant alteration of the microtubule polarity distribution.  相似文献   

11.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   

12.
Wnt signaling systems play important roles in the generation of cell and tissue polarity during development. We describe a Wnt signaling system that acts in a new way to orient the polarity of an epidermal cell division in C. elegans. In this system, the EGL-20/Wnt signal acts in a permissive fashion to polarize the asymmetric division of a cell called V5. EGL-20 regulates this polarization by counteracting lateral signals from neighboring cells that would otherwise reverse the polarity of the V5 cell division. Our findings indicate that this lateral signaling pathway also involves Wnt pathway components. Overexpression of EGL-20 disrupts both the asymmetry and polarity of lateral epidermal cell divisions all along the anteroposterior (A/P) body axis. Together our findings suggest that multiple, inter-related Wnt signaling systems may act together to polarize asymmetric cell divisions in this tissue.  相似文献   

13.
Planar tissue polarity is a fundamental feature of many epithelia. Large-scale cell polarity patterns govern the orientation of external structures such as hairs and cilia. Tissue polarity patterns arise from the collective organization of cells, which are polarized individually. Such cell and tissue polarities are reflected in anisotropic distributions of proteins of the planar cell polarity (PCP) pathway. Here we give an overview on recent progress in understanding how large-scale patterns of tissue polarity are controlled. We highlight the role of active mechanical events in the organization of polarity patterns during the development of the pupal fly wing. Patterns of cell flow are generated by mechanical stresses exerted on the tissue as well as by oriented cell divisions and neighbor exchanges. We discuss how the resulting tissue shear controls polarity orientation. We argue that the often-observed alignment of PCP either parallel or perpendicular to the long axis of developing tissues is a characteristic consequence of shear-induced polarity alignment. This principle allows for the versatile and robust generation of polarity patterns in tissues.  相似文献   

14.
Marta J. Laskowski 《Planta》1990,181(1):44-52
The orientation of microtubules in cells of redlight-grown pea plants (Pisum sativum L.) was examined by means of immunofluorescence. Microtubules (MTs) in rapidly elongating, subepidermal cells commonly form multiple, parallel strands that run transverse to the cell's axis of elongation. By contrast, MTs in nonelongating subepidermal cells form steeply pitched helical arrays; MTs in non-elongating epidermal cells are oriented parallel to the axis of elongation. This change in orientation occurs during the time interval in which growth rate is declining. The transition is abrupt rather than gradual and occurs in both epidermal and subepidermal cells at the same time. Plants irradiated for 2 h with a growth-inhibiting fluence of blue light did not undergo the same transition, indicating that factors other than changing elongation rates must be responsible for triggering the reorganization of MT arrays.  相似文献   

15.
The segment polarity genes of Drosophila are required for intrasegmental organization, as revealed by their abnormal cuticular morphology in mutant embryos. Lesions in most of these loci result in a similar cuticular phenotype, in which the normally naked, posterior region of the segment is covered to varying degrees by ectopic denticles. A temperature-sensitive allele of armadillo, which allows us to vary the level of arm+ activity, generates this entire range of phenotypes, suggesting that these genes affect a common pathway. Previous work with a strong allele of arm revealed the locus to be cell-autonomous, in that small homozygous epidermal clones secreted denticles. We have conducted a similar clonal analysis at all levels of arm+ activity. This shows a differential tendency toward cell transformation and cell death within the segment. Antibodies to segmentation gene-fusion products show that the cell death is primarily in the most posterior region of the segment. We suggest that differential cell respecification, resulting in transformation or death, is involved in generating the segment polarity phenotype.  相似文献   

16.
Formation of a multicellular organism is a complex process involving differentiation and morphogenesis. During early vertebrate development, the radial symmetric organization of the egg is transferred into a bilateral symmetric organism with three distinct body axes: anteroposterior (AP), dorsoventral, and left–right. Due to cellular movements and proliferation, the body elongates along the AP axis. How are these processes coupled? Two recent publications now indicate that cell migration as well as orientated cell divisions contribute to axis elongation. The processes are coupled through the planar cell polarity pathway. 1 At the same time, the AP axis is patterned independently of convergent extension. This process, however, is required for cell migration and represents a cue for polarized cell motility during gastrulation. Thus, it is AP polarity that instructs individual cells how to orientate with respect to the embryonic axis and provides positional information for the process of convergent extension. 2 BioEssays 26:1272–1275, 2004. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

18.
Fibroblasts are responsible for the synthesis, assembly, deposition, and organization of extracellular matrix molecules, and thus determine the morphology of connective tissues. Deposition of matrix molecules occurs in extracellular compartments, where the sequential stages are under cellular control. Cell orientation/polarity is important in determining how the cell orients these extracytoplasmic compartments and therefore how the matrix is assembled and oriented. However, the control of cell orientation is not understood. Fibroblasts from three tissues with different morphologies were studied to determine whether cells maintained their characteristic phenotype. Fibroblasts from cornea, which in vivo are oriented in orthogonal layers along with their matrix; from tendon, a uniaxial connective tissue, where cells orient parallel to each other; and from dermis, a connective tissue with no apparent cellular orientation, were used to study cell morphology and orientation in three-dimensional collagen gels. The different cells were grown for 3 and 7 days in identical three-dimensional collagen gels with a nonoriented matrix. Confocal fluorescence microscopy demonstrated that corneal fibroblasts oriented perpendicular to one another at 3 days, and after 7 days in hydrated gels these cells formed orthogonal sheets. Tendon fibroblasts were shown by the same methods to orient parallel to one another in bundles at both 3 and 7 days, throughout the depth of the gel. Dermal fibroblasts showed no apparent orientation throughout the hydrated gels at either time point examined. The organization of these different cell types was consistent with their tissue of origin as was the cell structure and polarity. These studies imply that cellular and tissue phenotype is innate to differentiated fibroblasts and that these cells will orient in a tissue-specific manner regardless of the extracellular matrix present.  相似文献   

19.
Effects of electric fields on fibroblast contractility and cytoskeleton   总被引:2,自引:0,他引:2  
We used silicone rubber substrata and fluorescent staining of cytoskeletal components to study the mechanisms by which electrical voltage gradients cause reorientation of embryonic chick fibroblasts in tissue culture. No evidence was found for a direct stimulation of cell contractility, either parallel or perpendicular to the voltage gradient. Instead, there was a gradual weakening in cell contractility in the axis parallel to this gradient, accompanied by progressive retraction of lamellae oriented along this axis, apparently due to selective weakening of cell-substratum adhesions. The cells then elongated perpendicular to the electric field, and strengthened their contractility in that axis. Fluorescence microscopy showed that cytoplasmic actin stress fibers and microtubules oriented perpendicular to the imposed voltage gradient. Many more cases were observed in which cell morphology had reoriented, but the actin fibers had not, as compared to the converse (cytoskeleton oriented, but no morphology). This disparity further supports the interpretation that the redirection of cell contractility is a consequence of morphological reorientation, rather than its cause. We also studied the effects of reversing the polarity of the electric fields at constant intervals (of as long as 1 minute). Fibroblasts failed to orient in response to such alternating fields, even after long exposure, but these same cells did reorient in response to pulsed currents in a consistent direction separated by "rest periods" (with no current). This combination of results is more consistent with an electrophoretic mechanism than with one depending on voltage-induced changes in membrane permeabilities.  相似文献   

20.
E Wieschaus  R Riggleman 《Cell》1987,49(2):177-184
Embryos hemizygous for armadillo produce a "segment polarity" phenotype in which the naked posterior two-thirds of each segment is replaced by denticles with reversed polarity. Small patches of homozygous arm cells induced by mitotic recombination also form such denticles, indicating that the changes in cellular fate observed in homozygous arm embryos are autonomous at the level of single cells. Clonally derived arm patches do not, however, show the characteristic arm polarity reversals, arguing that this feature of the phenotype depends on cell interactions in fully mutant embryos. Few, if any, clones were found in the posterior-most regions of the naked cuticle, and none were found in the posterior compartments of the thorax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号