首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.  相似文献   

2.
The erythrocyte metabolism of two patients with nonspherocytic hemolytic anemia caused by a hexokinase deficiency, and a pyruvate kinase deficiency, respectively, were studied with NMR. The complexing of ATP and 2,3-diphosphoglycerate (2,3-DPG) with Mg2+ and hemoglobin (Hb) was determined using 31P-NMR on oxygenated and deoxygenated cells to investigate the influences of these enzyme defects on intracellular magnesium distribution and on Hb oxygen dissociation. In the pyruvate kinase-deficient red blood cells, the 2,3-DPG concentration was almost twice the normal value and the ATP concentration was near the lower limit of the normal range. In the hexokinase-deficient red cell population, the predominance of young cells masked the deficiency. Therefore, reticulocyte control cells were included in this study. In the oxygenated pyruvate kinase-deficient cells, the fraction of ATP that is complexed to magnesium as well as the free Mg2+ concentration were normal, despite the abnormal concentration of 2,3-DPG. In the deoxygenated cells the free Mg2+ concentration was lower than in normal cells. The fraction of Hb complexed with 2,3-DPG was higher than normal in both oxygenated and deoxygenated pyruvate kinase-deficient cells, in accordance with the high p50 of the oxygen-hemoglobin dissociation curve. In hexokinase-deficient cells, two major abnormalities are found: when the cells were deoxygenated, the concentration of ATP and 2,3-DPG fell. This was not observed for any other sample and could, therefore, be a consequence of the hexokinase deficiency. Despite almost normal levels of magnesium-binding metabolites, the free Mg2+ concentration in oxygenated and deoxygenated cels is much lower than in normal cells. This could be a cell-age-related phenomenon, since lower free Mg2+ concentrations were also found in reticulocyte control cells.  相似文献   

3.
Leukocyte-and thrombocyte-poor packed red cells obtained from ACD or. ACD-AG blood were resuspended to a hematocrit of about 55% and stored at 4 degrees C. The resuspension solution consisted of xylitol, inorganic phosphate, bicarbonate, adenine (A) and guanosine (G) solved in water. In one case glucose, citrate and sucrose were also added, in another one, sorbitol. The 2,3-DPG and the ATP level remained for a longer period in the sorbitol-xylitol-medium than in the glucose-xylitol-medium. The ATP content in the red cell suspension was higher than in packed cells. Higher ATP values were obtained in red blood cells from whole blood with adenine and guanosine. The survival rate of resuspended red blood cells in glucose-AG-citrate-sucrose medium was about 80--85% after 3 weeks of storage and 77% after 6 weeks with a higher range.  相似文献   

4.
Although intraerythrocytic ATP and 2,3-bisphophoglycerate (2,3-BPG) are known as direct indicators of the viability of preserved red blood cells and the efficiency of post-transfusion oxygen delivery, no current blood storage method in practical use has succeeded in maintaining both these metabolites at high levels for long periods. In this study, we constructed a mathematical kinetic model of comprehensive metabolism in red blood cells stored in a recently developed blood storage solution containing adenine and guanosine, which can maintain both ATP and 2,3-BPG. The predicted dynamics of metabolic intermediates in glycolysis, the pentose phosphate pathway, and purine salvage pathway were consistent with time-series metabolome data measured with capillary electrophoresis time-of-flight mass spectrometry over 5 weeks of storage. From the analysis of the simulation model, the metabolic roles and fates of the 2 major additives were illustrated: (1) adenine could enlarge the adenylate pool, which maintains constant ATP levels throughout the storage period and leads to production of metabolic waste, including hypoxanthine; (2) adenine also induces the consumption of ribose phosphates, which results in 2,3-BPG reduction, while (3) guanosine is converted to ribose phosphates, which can boost the activity of upper glycolysis and result in the efficient production of ATP and 2,3-BPG. This is the first attempt to clarify the underlying metabolic mechanism for maintaining levels of both ATP and 2,3-BPG in stored red blood cells with in silico analysis, as well as to analyze the trade-off and the interlock phenomena between the benefits and possible side effects of the storage-solution additives.  相似文献   

5.
The effects of 2,3 diphosphoglyceric acid (2,3-DPG), adenosine triphosphate (ATP), and inositol hexaphosphate (IHP) on the oxygen affinity of whole “stripped” hemoglobin (WSH), hemoglobin H (Hb-H), hemoglobin A (Hb-A) and hemoglobin D (Hb-D) isolated from 18-day chick embryo blood have been determined. The effect of the three organic phosphates upon the oxygen dissociation curves is similar and the following order of decreasing oxygen affinity of the organic phosphates was observed for each hemoglobin: 2,3-DPG < ATP < IHP. 2,3-DPG appears to have a slightly greater effect upon the P50 of Hb-H than upon that of either of the two adult-type hemoglobins. However, this effect seems insufficient to suggest a preferential interaction of 2,3-DPG with Hb-H which would account for either the large amounts of 2,3-DPG in the erythrocytes of embryos or the higher oxygen affinity of the whole blood. The effects of the organic phosphates upon the Hill constant of the purified hemoglobins are variable. It is concluded that since the distribution of hemoglobins H, A, and D in the erythrocytes during the developmental period from 18-day embryos to 6-day chicks remains fairly constant, the previously described progressive decrease in oxygen affinity of the whole blood during this period results from changes in the total amount and distribution of the intraerythrocytic organic phosphates.2  相似文献   

6.
31P NMR spectroscopy has been used to evaluate the usefulness of verapamil, a calcium channel blocker, in preventing ischemic renal damage. Phosphorylated metabolites have been investigated before, during and after 48 hrs of hypothermic storage. The rapidity in adenosine triphosphate resynthesis and the phosphomonoesters and phosphodiesters levels after reperfusion at the end of the storage period (48 hrs), were significantly higher in verapamil-treated kidneys. Phosphomonoesters to inorganic phosphate ratio, during the storage period, is even higher. These findings suggest that verapamil may protect against ischemic renal damage and so it can be useful for renal preservation. Furthermore, it has been shown that 31P NMR spectroscopy puts into evidence the biochemical recovery and allows the assessment of the viability of organs.  相似文献   

7.
Changes in quality of blood units containing one and a half or double amounts of glucose, stored at +4 degrees C for three weeks were analysed. An experimental preservative containing glucose and fructose (1 : 1) was also used. No other additives (purine or purine-nucleoside) were applied. A standard CPD preservative of the National Inst. of Haematology and Blood Transfusion was used as control. The pH, plasma free haemoglobin, K+ content, red blood cell (RBC) ATP and 2,3-DPG content, and RBC fragility index were determined in each sample. Increase of glucose concentration, the addition of fructose had a beneficial effect on blood pH, and on plasma free haemoglobin and K+ concentration. 150% glucose improved the 2,3-DPG maintenance in stored blood.  相似文献   

8.
Changes in pH and pO2 of the blood have been studied for age peculiarities of their effect on the glycolysis rate and the content of ATP and 2,3-diphosphoglycerate (2,3-DPG) in erythrocytes (in vitro). The fresh venous blood of practically healthy young (aged 20-29) and old (aged 75-85) people was used. Acidosis was shown to induce inhibition of glycolysis and decrease of the ATP and 2.3-DPG concentrations in erythrocytes, while alkalosis and hypoxemia-an increase of the glycolysis rate and 2.3-DPG content. In the both cases changes in the indices studied were considerably lower in old people as compared to young ones.  相似文献   

9.
1. Erythrocytes in whole blood samples from dogs with phosphofructokinase (PFK) deficiency had lower 2,3-diphosphoglycerate (2,3-DPG) concentrations, higher ATP concentrations, and were more alkaline fragile than normal canine erythrocytes. 2. Reticulocytes from a PFK-deficient dog contained nearly three times the ATP concentration of normal canine erythrocytes, and had 2,3-DPG concentrations similar to normal canine erythrocytes. 3. PFK-deficient reticulocytes are not alkaline fragile. 4. The erythrocyte 2,3-DPG concentration in whole blood samples from PFK-deficient dogs was increased to normal by in vitro incubation with dihydroxyacetone, pyruvate and phosphate. This incubation resulted in only a slight increase in ATP concentration. 5. The alkaline fragility of these 2,3-DPG replenished PFK-deficient erythrocytes was normal. 6. Findings in this study indicate that the increased alkaline fragility of canine PFK-deficient erythrocytes is the result of decreased intracellular 2,3-DPG concentration.  相似文献   

10.
Blood collected in citrate-phosphate-dextrose-adenine (CPDA-1) containing transfusional bags, was weekly tested throughout a 35 day period. Biochemical assays included plasmatic glucose, electrolytes, free Hb, acid-base balance and hemogasanalysis. Intraerythrocytic ATP and 2,3 DPG were also determined. Results show that an almost total 2,3 DPG depletion occurs during the first three weeks, whereas intracellular ATP are about 50% of the initial values, at the same time. Lowering of pH is also maximal at the third week. pCO2 variation pattern is biphasic: an early increase due to HCO3- titration by lactic acid arising from red cells glycolysis, followed by a decrease probably due to plastic bag permeability to CO2 itself. The percentage of O2Hb also rises during blood storage: this might be the combined result of increase in pO2 and decrease in 2,3 DPG content. A rise of free Hb was obtained; extracellular K+ levels underwent a sixfold increase in 35 days. The mechanism of relative variations of these parameters and the gas transport are discussed. Some of these parameters might be used as routine controls to asses viability and functional status of stored red cells for transfusional use.  相似文献   

11.
2,3-Diphosphoglycerate (2,3-DPG), an intracellular metabolite of glycolytic pathway is known to affect the oxygen binding capacity of haemoglobin and mechanical properties of the red blood cells. 2,3-DPG levels have been reported to be elevated during anaemic conditions including visceral leishmaniasis. 2,3-DPG activity in P. falciparum infected red blood cells, particularly in cells infected with different stages of the parasite and its relationship with structural integrity of the cells is not known. Chloroquine sensitive and resistant strains of P. falciparum were cultured in vitro and synchronized cultures of ring, trophozoite and schizont stage rich cells along with the uninfected control erythrocytes were assayed for 2,3-DPG activity and osmotic fragility. It was observed that in both the strains, in infected erythrocytes the 2,3-DPG activity gradually decreased and osmotic fragility gradually increased as the parasite matured from ring to schizont stage. The decrease in 2,3-DPG may probably be due to increased pyruvate kinase activity of parasite origin, which has been shown in erythrocytes infected with several species of Plasmodium. The absence of compensatory increase in 2,3-DPG in P. falciparum infected erythrocytes may aggravate hypoxia due to anaemia in malaria and probably may contribute to hypoxia in cerebral malaria. As 2,3-DPG was not found to be increased in erythrocytes parasitized with P. falciparum, the increased osmotic fragility observed in these cells is not due to increased 2,3-DPG as has been suggested in visceral leishmaniasis.  相似文献   

12.
S Masson  B Quistorff 《Biochemistry》1992,31(33):7488-7493
The 31P NMR visibility of ATP of the perfused rat liver was tested over a wide range of metabolic conditions, including normoxic and hypoxic perfusions, fructose loads, and various intervals of normothermic ischemia, for both ad libitum fed and 24-h fasted rats. The 31P NMR signal of ATP was compared to the concentration of ATP determined by enzymatic assays on liver biopsies performed at the end of NMR acquisition. In a first series of experiments, the NMR resonance of intracellular ATP was quantitated in absolute terms by applying the 1H NMR water signal as internal reference: during normoxic and hypoxic perfusions, a constant amount of ATP (0.43 +/- 0.19 mM, mean +/- SD), approximately 12% of the cellular ATP, is not detected by NMR. Nevertheless, there is a high correlation (slope = 0.96 +/- 0.09; r2 = 0.93) between the measurements of ATP by 31P NMR spectroscopy and by biochemical analysis. In a second series of experiments, there was a highly significant correlation between the NMR and analytical biochemical measurements of ATP for whole range of metabolic states, i.e., fructose loads (1.0-10 mM) and various intervals of normothermic ischemia (ranging from 2 to 12 min), indicating unchanged ATP visibility. Thus, as opposed to the studies of Murphy et al. [Murphy, E., et al. (1988) Biochemistry 27, 526-528], it is concluded that ATP at 37 degrees C remains almost entirely visible in the perfused rat liver, also during ischemia.  相似文献   

13.
Red blood cell 2,3 diphosphoglycerate (2,3-DPG) levels increase after ascent to high altitude. Studies were undertaken to identify the biochemical mechanisms responsible for eliciting the 2,3-DPG response in several types of subjects. These included (1) short-term exposure to 3400 m in ten subjects; (2) exposure to 4300 m in an additional ten subjects; (3) studies in 28 high-altitude normal residents of 3100 m; and (4) studies in 28 high-altitude residents with chronic mountain polycythemia. Controls were 41 residents of 240 m. Regression analysis identified the glycolytic variables, termed “key variables,” on which variation in 2,3-DPG levels was dependent (P < .05). Key variables common to the short-term studies were glucose-6-phosphate, phosphoenolpyruvate, and the ratio of the levels of adenosine diphosphate to adenosine triphosphate. The positions of these key variables in the glycolytic pathway and their mean levels suggest erythrocyte hexokinase and pyruvate kinase activation as possible enzymatic mechanisms. Key variables unique to the 3400 m study suggested phosphofructokinase activation also acted to increase 2,3-DPG levels. 2,3-DPG levels in the normal 3100 m residents were not different from low-altitude values, and 2,3-DPG levels in these samples did not appear to be dependent on any of the glycolytic variables examined. Among the high-altitude residents with polycythemia, higher 2,3-DPG levels were dependent on glucose-6-phosphate, fructose diphosphate, dihydroxyacetone phosphate, and the ratio of adenosine diphosphate to adenosine triphosphate levels. The positions of these variables in the glycolytic pathway and their mean levels suggested activation of the hexokinase and phosphofructokinase enzymes.  相似文献   

14.
20 male elite long distance runners were compared to a control group of blood donors to determine the effect of training on red blood cells. The acute effects of exercise on red cells were investigated in 11 of the runners following a race of 15-30 km. The runners had elevated resting values of red cell 2,3-DPG (P less than 0.05) and mean cell volume (P less than 0.01); blood Hb and ATP were not different from concentrations in the control group. The red cell status of the athletes may be explained by an increased proportion of young erythrocytes in runners. No statistically significant changes in red cell 2,3-DPG, ATP, mean cell volume or blood Hb were found post exercise.  相似文献   

15.
Patients on a chronic hemodialysis regimen were studied with respect to their erythrocyte adaptation to anemia. Erythrocyte 2,3-diphosphoglycerate (DPG) concentration was suboptimal compared with that of anemic patients who were not uremic. In uremic patients erythrocyte 2,3-DPG correlated poorly with hemoglobin level but more strongly with plasma pH. Differences between observed levels of erythrocyte 2,3-DPG and the values predicted using data from other anemic patients also correlated with pH. Gradual correction of plasma pH with oral sodium bicarbonate resulted in a substantial increase in erythrocyte 2,3-DPG and a decrease in oxygen affinity. Therefore, maintenance of normal pH in uremic subjects may improve tissue oxygenation. On the other hand, the rapid correction of acidosis during dialysis resulted in increased oxygen affinity. This response was due to the direct effect of pH on oxygen affinity in the absence of a significant change in erythrocyte 2,3-DPG or adenosine triphosphate (ATP) during hemodialysis. Erythrocyte ATP but not 2,3-DPG correlated with serum inorganic phosphate in uremic subjects. A 21% reduction of serum phosphate produced by ingestion of aluminum hydroxide gel had no significant effect on these variables.  相似文献   

16.
The relationship between hemorheology, erythrocyte ATP and 2,3-diphosphoglycerate (2,3-DPG) concentrations, and von Willebrand factor antigen was studied in athletes and peripheral arterial disease patients. Lower blood viscosity, mainly due to a higher erythrocyte deformability, was found in athletes compared to control subjects. Higher 2,3-DPG/Ht levels in athletes were correlated with blood viscosity, erythrocyte deformability, the rigidity index, and erythrocyte suspension viscosity at low shear stress. It is suggested that these relationships might be determined by the predominance of immature erythrocytes in the blood circulation of the athletes. In the group of patients, a decrease in ATP/Ht was related to increased erythrocyte aggregation and a higher erythrocyte suspension viscosity. Moreover, the concentration of von Willebrand factor was positively correlated with the erythrocyte aggregation index, erythrocyte suspension viscosity, and plasma viscosity. The results show that alterations in erythrocyte and plasma rheology may be involved in the modification of the functional state of the vascular endothelium and the development of atherosclerosis.  相似文献   

17.
The carriage of oxygen by the blood and the in vivo response of the brain were investigated in mice infected with a lethal strain of Plasmodium yoelii. All mice with parasitaemia exceeding 70% were severely anaemic (Hb 3.5 +/- 1.8 g/dl; mean +/- 1 SD), acidotic (blood pH 7.04 +/- 0.06) and hypoglycaemic (blood glucose 0.6 +/- 0.76 mumol/ml). The oxyhaemoglobin dissociation curve (ODC) of blood from heavily infected mice was shifted right as compared to controls, but the increase in p50 was less than expected from the accompanying acidosis. The reduced shift right was due to a decrease in the 2,3-DPG/Hb ratio in infected animals (0.72 +/- 0.12, n = 17 vs 1.10 +/- 0.09, n = 12 in controls). Despite the severity of terminal infection, the cerebral pH and the relative steady-state concentrations of PCr, ATP and Pi measured in vivo by nuclear magnetic resonance (31P NMR) were normal. Alterations in brain energy status and pH cannot account for cerebral signs or death in this proposed mouse model of cerebral malaria.  相似文献   

18.
Blood preservatives containing adenine for six week storage have been prepared with inosine and methylene blue at various pH levels in order to maintain, 23-DPG levels for immediate oxygen transport upon transfusion. In one experiment, the adverse effect of a high pH on ATP maintenance was demonstrated in the presence of methylene blue and inosine. In this and other experiments it was clear that ATP was better maintained in low pH preservatives and DPG better maintained in higher pH preservatives. However, 2,3-DPG levels were kept from falling with CPD-adenine-inosine over a wide range of pH values. A CPD-adenine-inosine preservative at a pH 5.8 maintained normal DPG levels for three weeks of storage. A similar preservative but with a pH of 6.6 maintained normal DPG levels for 35 days of storage. It is suggested that if all blood bank units are going to have normal DPG levels for optimal oxygen transport at the time of transfusion then a CPD preservative with a higher pH and/or metabolic nutrients and regulators such as inosine or methylene blue would be required.  相似文献   

19.
The present study was designed to determine the effects of (i) phosphoenolpyruvate (PEP) treatment of red blood cells (RBCs) previously cold stored for a prolonged period in a liquid medium and (ii) the freezing of these treated cells in glycerol. RBCs stored for 21 days at 4 degrees C were incubated for 30 min at 37 degrees C with rejuvenant solution containing 50 mM PEP, 60 mM mannitol, 30 mM sodium chloride, 25 mM glucose, and 1 mM adenine, pH 6.0, and then frozen at -80 degrees C for 4 weeks. Red cell recovery as frozen and thawed red cells (FTRCs) after deglycerolization was increased to 80 +/- 4% compared to 43 +/- 9% in units without rejuvenation; the percentage of PEP-treated FTRCs was similar to the percentage of FTRCs recovered from fresh RBCs within 5 days after donation. Incubation of RBCs with PEP solution restored ATP and 2,3-DPG to levels seen in fresh RBCs, and also facilitated transformation of crenated RBCs to discocytes. These results indicate that maximum recovery of viable RBCs can be attained when FTRCs are processed from cells stored in the frozen state after they had been rejuvenated with PEP even after prolonged liquid storage.  相似文献   

20.
In vitro studies indicate that acute increases in intracellular phosphate concentration decrease red blood cell 2,3-diphosphoglycerate levels (G. Momsen, B. Vestergaard-Bogind, Arch Biochem Biophys 190:67, 1978). We have examined the relationship in vivo of serum phosphate concentration, red cell phosphate, 2,3-DPG and blood P50 in hyperglycemic dogs infused alternately with phosphate or chloride (control) solutions. During the 8-hr insulin infusion, serum phosphate (Pi) fell 40% in the chloride-treated animals and rose 71% in the phosphate-treated dogs (P less than 0.001, phosphate vs. control). RBC Pi concentration declined in the controls and rose significantly in the phosphate-infused dogs (P less than 0.02). Serum Pi and RBC Pi were correlated in the phosphate-managed animals (r = 0.76, P less than 0.02), but not in the controls. RBC 2,3-DPG failed to rise in either group during insulin infusion and regression analysis showed a negative correlation between serum Pi and 2,3-DPG (r = -0.90, P less than 0.005) and between RBC Pi concentration and 2,3-DPG (r = -0.84, P less than 0.02). P50 failed to change in either group during insulin treatment and for up to 24 hr after initiation of the 8-hr infusion of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号