首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I M Russu  S S Wu  K A Bupp  N T Ho  C Ho 《Biochemistry》1990,29(15):3785-3792
High-resolution 1H and 31P nuclear magnetic resonance spectroscopy has been used to investigate the binding of 2,3-diphosphoglycerate to human normal adult hemoglobin and the molecular interactions involved in the allosteric effect of the 2,3-diphosphoglycerate molecule on hemoglobin. Individual hydrogen ion NMR titration curves have been obtained for 22-26 histidyl residues of hemoglobin and for each phosphate group of 2,3-diphosphoglycerate with hemoglobin in both the deoxy and carbonmonoxy forms. The results indicate that 2,3-diphosphoglycerate binds to deoxyhemoglobin at the central cavity between the two beta chains and the binding involves the beta 2-histidyl residues. Moreover, the results suggest that the binding site of 2,3-diphosphoglycerate to carbonmonoxyhemoglobin contains the same (or at least some of the same) amino acid residues responsible for binding in the deoxy form. As a result of the specific interactions with 2,3-diphosphoglycerate, the beta 2-histidyl residues make a significant contribution to the alkaline Bohr effect under these experimental conditions (up to 0.5 proton/Hb tetramer). 2,3-Diphosphoglycerate also affects the individual hydrogen ion equilibria of several histidyl residues located away from the binding site on the surface of the hemoglobin molecule, and, possibly, in the heme pockets. These results give the first experimental demonstration that long-range electrostatic and/or conformational effects of the binding could play an important role in the allosteric effect of 2,3-diphosphoglycerate on hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the 'core' oligosaccharide region. The spectral signals for various ortho- and pyrophosphoric esters were observed. All phosphate groups appeared to be monoesterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

3.
4.
Phosphorus-31 nuclear magnetic resonance spectroscopy of phospholipids   总被引:7,自引:0,他引:7  
  相似文献   

5.
31P NMR spectroscopy has been used to evaluate the usefulness of verapamil, a calcium channel blocker, in preventing ischemic renal damage. Phosphorylated metabolites have been investigated before, during and after 48 hrs of hypothermic storage. The rapidity in adenosine triphosphate resynthesis and the phosphomonoesters and phosphodiesters levels after reperfusion at the end of the storage period (48 hrs), were significantly higher in verapamil-treated kidneys. Phosphomonoesters to inorganic phosphate ratio, during the storage period, is even higher. These findings suggest that verapamil may protect against ischemic renal damage and so it can be useful for renal preservation. Furthermore, it has been shown that 31P NMR spectroscopy puts into evidence the biochemical recovery and allows the assessment of the viability of organs.  相似文献   

6.
7.
1. The chemical shifts (delta) of the phosphates of 2,3-diphosphoglycerate and adenosine triphosphate (ATP) were determined by phosphorus nuclear magnetic resonance (31P NMR) spectroscopy and were found to be displaced downfield following the addition of hemoglobin (3 mM) to a solution of either diphosphoglycerate (5 mM) or ATP (1 mM). 2. The binding of these compounds to hemoglobin was also determined by membrane ultrafiltration. A direct relationship was observed between the change in chemical shift ((delta delta) of the 2-P and 3-P of diphosphoglycerate and the percent diphosphoglycerate bound, when the latter was varied by altering pH, oxygenation state, or total diphosphoglycerate concentration. 3. In comparable studies with ATP binding, a linear relationship between the delta delta values of the gamma-, beta-, and alpha-P of ATP and the percent of ATP bound was not observed when the data from all of the experiments were plotted. NMR signals were not detectible in deoxyhemoglobin solutions containing 1 mM ATP but were seen in solutions containing 3.8 mM ATP. 4. The results indicate that 31P NMR spectroscopy is a promising tool for investigating organic phosphate interactions with hemoglobin.  相似文献   

8.
Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectra were obtained from living toad retinae and toad retinal extracts at 4 degrees C. Several phosphorus metabolites--nucleoside di- and triphosphates (NTP), phosphocreatine, phosphodiesters, inorganic phosphate, and phosphomonoesters--were identified from the spectra of whole retinae. The intracellular pH was determined to be 7.27 +/- 0.06 at 4 degrees C and the intracellular MgNTP/NTP ratio was at least 0.77. These results are consistent with those reported by other techniques, and they show that 31P-NMR spectroscopy can be used for noninvasively and quantitatively studying the metabolism of living toad retinae, and for monitoring its changes over time.  相似文献   

9.
Summary Glucose metabolism inE. coli strain HB101, as a plasmid-free cell and as a host to two plasmids of different copy numbers, has been characterized using31P NMR. While the low-copy-number strain was found to behave very similarly to the plasmid-free strain, dramatically different behavior was exhibited by the high-copy-number strain. This strain maintained a nearly constant intracellular pH after addition of glucose to a starved suspension while intracellular pH of the other strains dropped considerably. The inorganic phosphate level in the high-copy-number strain was substantially higher than in the other strains, and the NTP level was much lower. Glycolytic rates of all three strains, however, were nearly identical. The trend in glycolytic rate strongly suggests that transport of glucose into the cell is the rate-limiting step under these conditions.  相似文献   

10.
A systematic procedure has been formulated for estimating the relative intracellular concentrations of sugar phosphates in Saccharomyces cerevisiae based upon (31)P nuclear magnetic resonance (NMR) measurements. The sugar phosphate region of the (31)P NMR spectrum is first decomposed by computer analysis, and the decomposition consistency and identification of individual sugar phosphate resonances are established based on in vitro chemical shift calibrations determined in separate experiments. Numerous evaluations of intracellular S. cerevisiae compositions for different strains and different cell environments provide the basis for in vivocorrelations of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, beta;-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6 phosphate. Relative intracellular sugar phosphate concentrations are obtained by correcting peak areas for partial saturation during transient in vivo experiments. In vivo concentrations estimated by this method agree well with estimates for similar systems based on other techniques. This approach does not require costly la belled compounds, and has the advantage that other important metabolic state variables such-as internal and external pH and intracellular levels of phosphate, ATP, ADP, NAD(H), and polyphosphate may be determined from the same (31)P spectrum. Extension of this strategy to other cellular systems should be straightforward.  相似文献   

11.
87Rb, 23Na and 31P nuclear magnetic resonance (NMR) were used to monitor changes in renal cations and energetics during the induction of hypoxia in the isolated perfused rat kidney. The NMR-determined unidirectional Rb+ flux in normoxic kidneys was shown to be a good measure of net intracellular K+ influx in the perfused rat kidney model. The changes in 87Rb, 23Na and 31P spectra following the induction of hypoxia are consistent with hypoxic depletion of intracellular adenosine triphosphate (ATP) and a subsequent decrease in Na-K-ATPase transport activity. The exponential rate constant for 87Rb+ efflux measured during Rb+ uptake in normoxic kidneys (0.12 +/- 0.01 min-1) was not significantly different to the rate constant for 87Rb+ efflux during the induction of hypoxia (0.16 +/- 0.07 min-1). We conclude that there is no direct effect of hypoxia on renal cellular membrane integrity and that renal cell sensitivity to hypoxia is due to an inability to sustain cellular ion gradients following depletion of intracellular ATP.  相似文献   

12.
The enzymatic hydrolysis of fructose 1,6-bisphosphate (Fru-1,6-P2) to fructose 6-phosphate (Fru-6-P) and inorganic phosphate (Pi), which is catalyzed by fructose-1,6-bisphosphatase, has been studied by 31P nuclear magnetic resonance spectroscopy (NMR). At pH 7.5 and 15 degrees C, the equilibrium constant for the central complex K'eq = [E.Fru-6-P.Pi]/[E.Fru-1,6-P2.H2O] is about 2. This observation is in harmony with results obtained with a number of Bi Bi enzyme systems for the determination of K'eq in which a variety of experimental techniques were used (Knowles, J.R. (1980) Annu. Rev. Biochem. 49, 877-919). Significant changes in 31P NMR chemical shifts were observed for both the substrate, Fru-1,6-P2, and the product, Fru-6-P, when bound to the enzyme relative to ligand free in solution. The chemical shifts of the substrate and product were altered further in the presence of Mg2+, the catalytic divalent metal ion. The chemical shifts caused by the addition of metal ion can be reversed in the presence of trans-1,2-diaminocyclohexane- N,N,N',N'-tetraacetic acid (CDTA) or AMP. In the presence of the metal ion chelator or the nucleotide, the substrate had a chemical shift that was about the same as that observed in the absence of metal ion. On the basis of these observations we suggest that AMP and CDTA exhibit similar effects, i.e. they both remove the catalytic metal ion from the enzyme. This finding is supportive of the suggestion (Scheffler, J. E., and Fromm, H.J. (1986) Biochemistry 25, 6659-6665; Liu, F., and Fromm, H.J. (1990) J. Biol. Chem. 265, 7401-7406) that the role of AMP in the regulation of fructose-1,6-bisphosphatase is to prevent binding of the divalent metal activator to the enzyme.  相似文献   

13.
Alterations in myocardial energy metabolism have been implicated in the pathophysiology of cardiac diseases such as heart failure and diabetic cardiomyopathy. 31P magnetic resonance spectroscopy (MRS) is a powerful tool to investigate cardiac energetics non-invasively in vivo, by detecting phosphorus (31P)-containing metabolites involved in energy supply and buffering. In this article, we review the historical development of cardiac 31P MRS, the readouts used to assess cardiac energetics from 31P MRS, and how 31P MRS studies have contributed to the understanding of cardiac energy metabolism in heart failure and diabetes.This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

14.
15.
Glycophorin A was phosphorylated using protein kinases and the new protein was investigated using31P NMR spectroscopy. Most of these ~30 moles of phosphate were found to be attached to Ser and Thr. Some of these phosphate residues appear to be affected by the carbohydrate residues present. The phosphorylated protein appears to be in a severe state of aggregation, with the degree of aggregationpH-dependent.  相似文献   

16.
In vivo 31P nuclear magnetic resonance (31P NMR) spectroscopy has been used to compare metabolic profiles with tumor radiosensitivity. A radioresistant mammary carcinoma (MCa) and a radiosensitive methylcholanthrene-induced fibrosarcoma (Meth-A) were studied by 31P NMR spectroscopy in the tumor volume range of approximately 100-1200 mm3. The MCa showed a constant pH in this volume range; the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) for 160-300 mm3 tumors was 0.33 +/- 0.11 (mean +/- standard deviation) and did not change (0.29 +/- .09) for tumors in the volume range of 600-1200 mm3. In comparison, the Meth-A showed a decrease in tumor pH as volume increased from 160-300 mm3 (pH 7.16 +/- 0.4) to 600-1200 mm3 (pH 6.94 +/- .07). Tumor PCr/Pi decreased from 0.70 +/- .16 (160-300 mm3) to 0.33 +/- .16 (600-1200 mm3). The radiation doses for control of MCa-induced tumors in 50% of the treated tumors ranged from 65 (150-250 mm3) to 71 Gy (1000-1300 mm3) and for the Meth-A-induced tumors ranged from 35 (150-250 mm3) to 38 Gy (1000-1300 mm3). These results suggest that 31P NMR spectra may be a qualitative predictor of tumor hypoxia, although further studies of human and rodent tumors are necessary to support this hypothesis.  相似文献   

17.
B J Fuller  A L Busza 《Cryobiology》1989,26(3):248-255
The use of nuclear magnetic resonance (NMR) spectroscopy to assess metabolic viability in organ preservation is discussed. A brief coverage of the physical principles involved and the biochemical information available from NMR spectroscopy is given. We also present the advantages and disadvantages of the method and outline the future possibilities of the technique in relation to organ preservation.  相似文献   

18.
P nuclear magnetic resonance spectra of a number of purified yeast O-phosphonohexoglycans were recorded. The data therefrom were correlated with established chemicals aspects of individual and collective polymer structures, permitting (a) conclusions to be drawn regarding the chemical environment of the phosphate groups of these polymers, and (b) assignment of anormeric configurations to the hexosyl phosphate residues.  相似文献   

19.
We used phosphorus magnetic resonance spectroscopy to study the calf muscles of elderly normal (mean +/- SD) (80.0 +/- 5.12 years), elderly impaired (80.7 +/- 0.58 years), old normal (66.8 +/- 1.92 years), and young normal people (24.6 +/- 4.72 years). Relative levels of inorganic phosphate (Pi), phosphocreatine (PCr), and adenosine triphosphate were measured with a 1.9-tesla, 30-cm bore magnet at rest and following plantra flexon exercise. No differences were found at rest or during recovery from exercise in the elderly normal subjects with respect to gender or the presence of stable medical problems treated with medication. At rest there was an age-related decrease in the ratio of PCr/Pi. After exercise, the time constant of PCr recovery increased with age. A mild 7-week exercise regimen consisting of plantar flexion had no effect on time constant of PCr recovery in the elderly subjects. Four elderly impaired subjects had lower PCr/Pi ratios at rest and slower time constant of PCr recovery after exercise than normal elderly subjects. We conclude that gender and the presence of stable medical problems had no effect on muscle metabolism in the elderly and that the elderly recovered slower than young controls. This slower recovery was not corrected with a mild exercise program.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号