首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recovery and utilization of proteinous wastes of leather making: a review   总被引:1,自引:0,他引:1  
Hides and skins, by-product of the meat industry is converted into a value added product namely leather by the tanners. Tanning essentially is the process of converting raw hides and skins into imputrescible substance. The tanning process has number of steps and generates significant quantities of by products and wastes. These solid and liquid wastes pose major environmental problem if not managed effectively. Large–scale production systems are adopted for leather processing in clusters and therefore, the industry receives focus of environmentalists and society. Consequently tremendous pressure is exerted by various pollution regulatory bodies. The hides and skins, after trimming, removal of flesh and fat, are treated with chemicals, which cross-link the collagen fibers to form a stable, durable material. The chemicals used may be derived from traditional vegetable products, or inorganic metal salts. During leather processing number of size reduction, leveling and purification operations are carried out which results in generation of untanned and tanned proteinous waste materials. In this paper, various recovery processes and utilization methodologies of proteinous solid wastes, emanating from leather processing operations prior to tanning is reviewed.  相似文献   

2.
Massive production of keratinaceous byproducts in the form of agricultural and industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This review summarizes the potential utility of some bacterial and fungal species for the production of keratinase using a variety of keratinaceous wastes as growth substrates. The application of microbial keratinases in waste management; animal feed, detergent, and fertilizer manufacturing; and leather, cosmetic, and pharmaceutical industries is also abridged in this review.  相似文献   

3.
成品铬革屑中蛋白质含量在 70 %以上 ,处理成小颗粒后与水、Ca(OH) 2 按 1∶4 0∶0 .4的比例混合 ,90℃反应 5h ,可溶性蛋白转化率近 6 0 % ,且在升温后加入Ca(OH) 2 有利于退鞣。以 6mol/L盐酸水解皮革蛋白粉制备复合氨基酸 ,水解 14h ,水解液以HD -I树脂脱色 ,氨基酸损失较少 ,且动态脱色效率明显高于静态脱色 ,采用 717树脂脱酸可获得pH4 .5 - 5的复合氨基酸溶液 ,总得率为 6 0 .1%。  相似文献   

4.
Life Cycle Assessment (LCA) has been used to detect the environmental ‘hot spots’ in the chrome-tanned bovine leather industry. We have studied those stages in the life cycle of leather, which occur ‘from cradle to gate’. The production chain studied starts with the agricultural products (fertiliser and pesticide production is also included) needed for cattle raising, it is followed by the slaughterhouse, and ends at the tanning industry gate. Main chemicals and waste flows in and out of this chain have also been included in the analysis. One of the main conclusions is that the tannery is an important stage in most of the impact categories, mainly due to the landfilling of the tannery wastes. Agriculture and — to a lesser extent — cattle raising also play a very important role in most of the impact categories; the former, due to the related energy consumption and use of fertilisers, and the latter due to the emissions associated with animal care. The Autonomous Government of Catalonia is using the results of this study to establish the environmental criteria that a leather product must fulfil in order to attain the Catalan eco-label.  相似文献   

5.
Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze “hard to degrade” keratinous wastes. This new class of proteases is known as “keratinases”. Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.  相似文献   

6.
AIMS: To characterize and optimize a novel Bacillus pumilus strain isolated from biological waste which produces protease with excellent dehairing effect. This newly isolated strain could be utilized in the industrial leather dehairing process. METHODS AND RESULTS: Bacterial strains secreting proteases were screened from biological wastes. Positive clones were further characterized by analysing their efficacy in dehairing and effects on collagen integrity. Among 171 colonies tested, a strain BA06, identified as B. pumilus, was picked owing to its efficient dehairing capabilities with minimal impact on collagen. By combined mutagenesis using UV, N-methyl-N'-nitro-N-nitrosdguanidine and Co(60)-gamma-rays, this strain was further improved with regard to its alkaline protease production. The alkaline protease activity of the mutant strain SCU11was greatly improved up to 6000 U ml(-1), in comparison with its parent strain BA06 of 1200 U ml(-1). CONCLUSIONS: By using screening and mutagenesis methods, we have successfully created a B. pumilus strain that can produce high levels of alkaline proteases that are able to efficiently remove hair from skin with minimal damage on the collagen. SIGNIFICANCE AND IMPACT OF THE STUDY: This strain could be used in commercial alkaline protease production for leather dehairing.  相似文献   

7.
Ocak  Bugra 《Food biophysics》2021,16(3):381-394

One of the long-standing problems of the leather manufacturing industry is that tons of solid leather waste generated during production meet environmental standards. Among all these solid wastes, untanned trimming wastes are of primary interest because of their relative collagen content, and therefore, in this research, hide trimming wastes from tanneries were used to prepare biodegradable films. The SDS-PAGE results suggested that obtained collagen hydrolysate (CH) was in its natural molecular form. Chitosan nanoparticles (CSNPs) were synthesized by ionotropic gelation technique with chitosan (CS) and tripolyphosphate anions and used in the preparation of CS/CH/CSNPs films containing different concentrations of CSNPs. The incorporation of CSNPs in CS/CH films has positively improved the films' remarkable physical properties. The DSC result showed that CS/CH films incorporated with CSNPs had higher glass transition and melting temperature. As a result, it was determined that CS/CH/CSNPs nanocomposite films have a high potential in biodegradable film systems.

  相似文献   

8.
Present work deals with the development of an efficient and value-added process for the management of chrome shavings, a protein-rich, chromium-containing solid waste, produced in large quantities during the post-tanning operations in the leather industry, using Bacillus subtilis P13, a hot spring isolate. This bacterium was able to effectively degrade and grow using chrome shavings as the protein source and produce in the spent medium high levels of a keratinolytic serine protease that can be proficiently applied for the pre-tanning processing step of hide dehairing. The bacterium was moderately chromium resistant tolerating up to 35 ppm and 350 ppm of Cr(VI) and Cr(III) salts, respectively and showed bioaccumulation and bio-sorption of Cr(III) and Cr(VI). Growth profile and enzyme production were comparable in basal and production media containing chrome shavings. An efficient waste management process is described using solid substratum column reactor, leading to the liquefaction of the proteinaceous waste and the recovery of dehairing protease as concentrated product as well as Cr recovery for reuse in tanning. A continuous reactor scheme is proposed, where the biomass can be reused as the seed for chrome shaving hydrolysis for in-house waste management and by-product recovery in the tannery industry.  相似文献   

9.
Disposal of paper mill waste by bioconversion is a novel approach which allows a direct conversion of cellulosic solid waste into fungal biomass. A cellulolytic microorganism Myrothecium verrucaria has been used for protein production under batch conditions in flasks. Biomass yield of 0.375 g per g of substrate consumed with 50–60% solid waste usage was observed. The nutritional quality of the biomass in terms of fat and protein contents shows promise for feed supplementation of monogastric animals.  相似文献   

10.
Animal fleshing (ANFL), the major proteinaceous solid waste discharged from leather manufacturing industries was used as the substrate for the production of alkaline protease by Pseudomonas aeruginosa. The strain isolated from the tannery wastewater was selected for its ability to produce protease of activity in the range 1160-1175 U ml(-1). The selective removal of non-fibrillar proteins such as albumin and globulin from ANFL by the protease enzyme during the progress of hydrolysis was confirmed using scanning electron microscopy (SEM). The breakdown of ANFL was also confirmed from the amino acid release into the fermentation medium by P. aeruginosa using high performance liquid chromatography (HPLC).  相似文献   

11.
【目的】研究并建立利用原生质体紫外诱变技术选育可利用廉价碳源发酵的高产油新菌株的方法。【方法】采用1.5%蜗牛酶和1.0%纤维素酶混合液水解去除细胞壁得到2A00015(近平滑假丝酵母,Candida parapsilosis)的原生质体,将其放于紫外灯下诱变及再生壁培养,筛选获得可利用廉价碳源发酵的高产油酵母,并采用气相色谱质谱联用法(GC-MS)测定其脂肪酸组成。【结果】突变效果最好的突变菌株2A00015/25用葡萄糖发酵培养7 d后,其生物量、油脂产率和产油量分别为17.77 g/L、58.12%和10.32 g/L,较原始菌株分别提高了12.45%、23.32%和38.68%;利用废糖蜜发酵培养,其生物量、油脂产率和产油量分别为18.54 g/L、49.44%和9.17 g/L,较原始菌株分别提高了9.09%、21.16%和32.18%。利用废糖蜜培养其产油效率虽低于利用葡萄糖培养,但从环境保护及原材料成本的角度考虑,用废糖蜜作为碳源发酵培养产生油脂更具优势。诱变菌株利用废糖蜜发酵后产生油脂经检测含有8种脂肪酸,其脂肪酸组成与植物油近似,其中不饱和脂肪酸含量占脂肪酸总量的82.4%。【结论】通过利用原生质体紫外诱变技术,成功选育出一株新的可利用廉价碳源的高产油海洋菌株,产油率达到49.4%,提高了21.2%。  相似文献   

12.
Global environmental regulations are changing the leather-processing industry. Pre-tanning and tanning processes contribute 80-90% of the total pollution in the industry and generate noxious gases, such as hydrogen sulfide, as well as solid wastes, such as lime and chrome sludge. The use of enzyme-based products is currently being explored for many areas of leather making. Furthermore, enzymes are gaining increasing importance in the de-hairing process, eliminating the need for sodium sulfide. This review discusses emerging novel biotechnological methods used in leather processing. One significant achievement is the development of a bioprocess-based de-hairing and fiber-opening methodology to reduce toxic waste.  相似文献   

13.
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.  相似文献   

14.
15.
New perspectives in plastic biodegradation   总被引:1,自引:0,他引:1  
During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution.  相似文献   

16.
The leather industry needs to switch from the traditional chemically based dehairing process to an environmentally friendly one so that the overall burdens to the environment are reduced. The primary goal of the work was thus to compare the chemical leather dehairing process to an enzymatically based one using the enzymes that are extracted after the application of solid state fermentation (SSF) on hair wastes generated after dehairing. The environmental burdens of the dehairing stage were determined using a life cycle assessment (LCA) approach by comparing the two aforementioned management scenarios. The first scenario was the commonly used technology in which hair is removed via a chemical process and then composted in open piles. This scenario included two subscenarios where hair waste is either incinerated or landfilled. In the second scenario, the proteolytic enzymes extracted during the SSF of the residual hair are used to dehair the new rawhides instead of chemicals. Industrial and laboratory data were combined with international databases using the SimaPro 8.0 LCA software to make comparisons. The environmental impacts associated with the enzymatic dehairing were significantly lower than the ones associated to the conventional chemical dehairing process. This difference is attributed to the impacts associated with the original production of the chemicals and to the electricity consumed in the conventional method. A sensitivity analysis revealed that the results are affected by the amounts of chemicals used during dehairing.  相似文献   

17.
AIMS: The aim of this study was to determine the keratinolytic ability of a range of bacteria and subsequently, to characterize the keratinase showing the greatest biotechnological potential. METHODS AND RESULTS: Nine bacteria, reported to produce extracellular proteases, were screened for production of keratinases. Of these, Lysobacter NCIMB 9497 exhibited the highest keratinolytic activity. The keratinase from this strain (Mr 148 kDa) was purified and characterized. Optimum activity occurred at 50 degrees C; no inhibition was demonstrated by phenylmethylsulphonyl fluoride (PMSF), but inhibition by EDTA was demonstrated. CONCLUSIONS: This study indicates that keratinase is a metalloprotease with a high degree of keratinolytic activity and stability. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first detailed report of a metalloprotease with keratinolytic activity. The novel reaction mechanism, degree of keratinolytic activity and stability indicate considerable biotechnological potential in the leather industry, and in the processing of poultry waste.  相似文献   

18.
Extracts of a leather widely used in the furniture and dress-making industries were tested for their mutagenic activity in the Salmonella/microsome assay. Extracts obtained after vigorous treatment of leather samples in a Soxhlet apparatus with toluene or ethanol were mutagenic in strain TA98 of S. typhimurium in the absence of S9 mix. The analysis of extracts of leather at various intermediate stages of processing showed that the mutagenic activity appeared after the coloration process. The responsible compound was identified to be an azo dye (Color Index: Acid Brown 83) whose mutagenic potency was about 4 revertants/micrograms.  相似文献   

19.
Strain Aureobasidium pullulans capable of utilizing hemicelluloses and xylan was cultivated on processed waste dialysis liquor from the production of viscose fibres, containing about 1.5% hemocelluloses. Basic conditions of biomass production were tested on a laboratory scale. The dialysis waste liquor adjusted with mineral acids to pH 4--5 and supplemented with 0.05% yeast autolyzate and 0.2% ammonium sulphate affords protein yields of about 0.8 g/l, corresponding to 4.0--4.5 g dry biomass. Biomass is isolated together with residual water-insoluble hemicelluloses which are not utilized by the microorganism. The total utilization of hemicelluloses attains about 70%.  相似文献   

20.
In recent years biodiesel has drawn considerable amount of attention as a clean and renewable fuel. Biodiesel is produced from renewable sources such as vegetable oils and animal fat mainly through catalytic or non-catalytic transesterification method as well as supercritical method. However, as a consequence of disadvantages of these methods, the production cost increases dramatically. This article summarizes different biodiesel production methods with a focus on their advantages and disadvantages. The downstream and upstream strategies such as using waste cooking oils, application of non-edible plant oils, plant genetic engineering, using membrane separation technology for biodiesel production, separation and purification, application of crude glycerin as an energy supplement for ruminants, glycerin ultra-purification and their consequent roles in economizing the production process are fully discussed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号