首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence and roles of cGMP were investigated in aleurone layers and protoplasts isolated from barley (cv Himalaya) grain. Levels of cGMP in freshly isolated barley aleurone layers ranged from 0.065 to 0.08 pmol/g fresh weight of tissue, and cGMP levels increased transiently after incubation in gibberellic acid (GA). Abscisic acid (ABA) did not increase cGMP levels in aleurone layers. LY 83583 (LY), an inhibitor of guanylyl cyclase, prevented the GA-induced increase in cGMP and inhibited GA-induced [alpha]-amylase synthesis and secretion. The inhibitory effects of LY could be overcome by membrane-permeant analogs of cGMP. LY also prevented GA-induced accumulation of [alpha]-amylase and GAMYB mRNAs. cGMP alone was not sufficient to induce the accumulation of [alpha]-amylase or GAMYB mRNA. LY had a less dramatic effect on the accumulation of mRNAs encoding the ABA-responsive gene Rab21. We conclude that cGMP plays an important role in GA, but not ABA, signaling in the barley aleurone cell.  相似文献   

2.
Gilroy S  Jones RL 《Plant physiology》1994,104(4):1185-1192
The response of protoplasts isolated from aleurone layers of barley (Hordeum vulgare L. cv Himalaya) to internally and externally applied hormone was analyzed to localize the site of perception of the hormonal signal. Protoplasts responded to externally applied gibberellic acid (GA3) with increased synthesis and secretion of [alpha]-amylase, transient expression of the glucuronidase reporter gene fused to the hormone-responsive elements of the [alpha]-amylase promoter, and the vacuolation typical of GA3-treated aleurone cells. When up to 250 [mu]M GA3 was microinjected into the protoplast cytoplasm, none of these responses were observed. This did not reflect damage to the protoplasts during the microinjection procedure, since microinjected protoplasts remained responsive to externally applied hormone. Nor did it reflect loss of microinjected GA3 from the protoplast, since 50% of microinjected [3H]GA20 was retained by protoplasts for at least 24 h. Externally applied abscisic acid (ABA) could reverse the stimulation of [alpha]-amylase synthesis and secretion, whereas microinjecting up to 250 [mu]M ABA was ineffective at antagonizing the stimulatory effect of GA3. These results suggest that the site of perception of GA3 and ABA in the barley aleurone protoplast is on the external face of the plasma membrane.  相似文献   

3.
Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue.  相似文献   

4.
During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as -amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.  相似文献   

5.
Abstract: We studied the effects of anoxia on α-amylase induction, comparing rice ( Oryza sativa L.) and barley ( Hordeum vulgare L.) grains. While gibberellic acid (GA3) induces α-amylase in rice half-grains under either aerobic or anaerobic conditions, barley half-grains are insensitive to this hormone when applied under anoxia. The possible repressive role of ethanol and abscisic acid (ABA) was investigated. Exogenously added ethanol at concentrations mirroring those found in anaerobically treated tissues was unable to repress α-amylase. The level of ABA in anoxic tissues was found to be much lower than the threshold for α-amylase repression. Overall, the results indicated that these two compounds cannot be held responsible for the failure of barley grains to respond to gibberellic acid. Furthermore, anoxia repressed the induction of α-amylase downstream of the slender mutation, indicating that the repression is independent of effects related to gibberellin perception. Overall, the results suggested that the ability of rice to respond to gibberellins under anoxia is an adaptative trait, independent of known negative regulators of α-amylase induction.  相似文献   

6.
7.
α-Amylases secreted by the aleurone layer of whole barley grains were relatively rich in histidine and relatively poor in glutamate/glutamine and serine when compared to other eukaryotic proteins. The secreted α-amylases had an estimated 0.5 residues each of glucose, mannose and N-acetylglucosamine per molecule of protein (MW 41 400 daltons), and gave positive staining reactions for carbohydrate on sodium dodecylsulfate polyacrylamide gels. Because the average α-amylase molecule had less than one sugar residue per enzyme molecule, it was concluded that secreted α-amylases were heterogeneous with respect to glycosylation. A second protein co-purified with α-amylase, but the amino acid composition of this protein was different from that of barley or wheat α-amylase. This protein was composed of two 21 500 dalton polypeptides. No significant amounts of L-leucine (14C-U) were incorporated into this second protein in isolated aleurone tissue during incubation with gibberellic acid, perhaps because much of it was already present in the starchy endosperm at the time of hormone addition.  相似文献   

8.
Transgenic seeds of rice (Oryza sativa L.) were used to investigate temporal, spatial, and hormonal regulation of a rice [alpha]-amylase gene, RAmy1A. Two overlapping segments of the RAmy1A promoter were fused to the coding region of the bacterial reporter gene, gusA. The resulting promoter-gusA fusions, pE4/GUS (-232 to +31) and pH4/GUS (-748 to +31), were used separately to transform rice protoplasts. [beta]-Glucuronidase (GUS) activity was detected in germinated transgenic seeds, although the two constructs showed no significant difference in timing or location of GUS expression. Both constructs first expressed GUS in the scutellar epithelium and then in the aleurone layer. Aleurone expression of GUS activity was strongly induced when embryoless half-seeds were treated with gibberellic acid. GUS expression in the aleurone layer was also suppressed by abscisic acid. These results indicate that the 5[prime] regulatory region from -232 to +31 is sufficient for temporal, spatial, and hormonal regulation of RAmy1A gene expression.  相似文献   

9.
Gibberellic acid enhances α-amylase (EC 3.2.1.1) production in isolated barley aleurone layers after a lag period of 4 to 8 h, and most of the enzyme is produced after 12 h of hormone treatment. Amino acids necessary for protein synthesis in barley aleurone layers are derived from the degradation of storage proteins in this tissue. Since bromate is an inhibitor of barley protease, in the presence of bromate the production of α-amylase in aleurone layers becomes dependent on exogenous amino acids. We have incubated aleurone layers with bromate plus 13C-labeled amino acids and [3H]leucine from 0 to 24, 0 to 12, and 12 to 24 h after the application of gibberellic acid. The chemical quantity of [3H]leucine was negligible in comparison to that of 13C-labeled amino acids. Therefore, any density shift of proteins observed must be due to the incorporation of 13C-labeled amino acids. The density shift of α-amylase and that of newly synthesized proteins (radioactivity profile) were determined by isopycnic centrifugation in CsCl density gradients. The density shift of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 12 to 24 h after the addition of hormone was much larger than that of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 0 to 12 h of hormone treatment. By comparing the density shift of α-amylase with that of newly synthesized proteins, it is apparent that essentially all the amylase molecules are de novo synthesized. We can conclude that there is little or no accumulation of an inactive α-amylase precursor in barley aleurone cells between the time of the application of gibberellic acid and the time of the rapid increase in α-amylase activity.  相似文献   

10.
α-Amylase levels in intact seeds of barley (Hordeum vulgare L. cv. Himalaya) reach a maximum at 3 to 4 days of germination while gibberellin levels continue to increase beyond 6 days of germination. In contrast to its effect on half seeds, gibberellic acid does not increase the total amount of α-amylase produced in germinating seeds. The inability of gibberellic acid to stimulate α-amylase production is not related to its availability; rather, evidence suggests that a factor(s) in whole seeds prevents further enhancement of α-amylase formation and accumulation. Hydrolysis products accumulate in the subaleurone space of the endosperm of germinating seeds up to concentrations of 570 milliosmolar. Chromatography of these hydrolysis products indicate the presence of maltose and glucose. Calculations based on reducing sugar determinations show that glucose accounts for as much as 57% of the solutes present in the endosperm fluid. Both maltose and glucose in the range of 0.2 to 0.4 M effectively inhibit the production of α-amylase by isolated barley aleurone layers. This inhibition is quantitatively similar to that brought about by solutions of polyethylene glycol and mannitol. On the basis of these data we propose that hydrolysis products which accumulate in the starchy endosperm of germinating seeds function to regulate the production of hydrolytic enzymes by the aleurone layer.  相似文献   

11.
Skadsen RW 《Plant physiology》1993,102(1):195-203
The physiological and molecular bases for contrasting [alpha]-amylase phenotypes were examined in germinating seeds of two barley (Hordeum vulgare L.) cultivars, Morex and Steptoe. Morex is a high-quality malting barley that develops high [alpha]-amylase activity soon after germination. Steptoe is a feed barley that develops only low [alpha]-amylase activity levels during this period. The expression of all high- and low-isoelectric point (pl) [alpha]-amylase isozymes is reduced in Steptoe. The amount of [alpha]-amylase mRNA per gram of seedling tissue is correspondingly lower in Steptoe. Southern blot analysis revealed that the cultivars have the same copy number and organization for most high- and low-pl genes. Steptoe seedlings or embryoless half-seeds produce little [alpha]-amylase in response to exogenous applications of gibberellic acid (GA3) compared with Morex. However, when isolated aleurones of both cultivars are treated with GA3, they produce similar amounts of high- and low-pl [alpha]-amylase RNAs. This suggests that a factor in the starchy endosperm is responsible for lowered [alpha]-amylase response in Steptoe. The factor is probably not abscisic acid (ABA), since the two cultivars have similar concentrations of ABA during germination.  相似文献   

12.
In germinating cereal caryopses, α-amylase is synthesized in the aleurone layer and scutellum epithelium. Produced enzyme is released into the endosperm, where starch is hydrolyzed. We investigated the effect of sugars on gibberellic acid (GA)-induced synthesis of this enzyme in both tissues of wheat (Triticum aestivum L.) seeds. α-Amylase synthesis in the embryo was much more sensitive to sugars, and their inhibitory effect was observed at the lower concentrations (10–20 mM), whereas in the aleurone layer the enzyme was only inhibited at a relatively high (above 100 mM) concentration of sugars in the medium. These results point to a specific (repressive) influence of sugars on embryonic α-amylase and probably to its nonspecific (osmotic) effect on the cells of the aleurone layer. It was found that phosphorylated sugars were more effective repressors of α-amylase than nonphosphorylated sugars.  相似文献   

13.
During germination the aleurone layer of barley grains becomes progressively less able to form more α-amylase in response to a dose of gibberellic acid (GA3). This decline appears to be linked to the presence of a growing embryo. In whole grains the embryo ‘modulates’ the response (α-amylase formation) to controlled external applications of GA3 in a dose-dependent manner. Sugars, and some other metabolites, repress α-amylase formation in transected grains, apparently by reducing levels of endogenously produced gibberellins. This effect is partly, but not completely, reversed by additions of GA3. External applications of GA3 augment the levels of several gibberellin fractions within the grain. The nature of the gibberellin material remaining on the surface of the grains alters with time. Grains treated with GA3 contain a conjugate of low biological activity, possibly a glycoside, that is hydrolysed by a mixed glycosidase preparation to release a biologically-active gibberell in resembling GA3.  相似文献   

14.
Barley (Hordeum vulgare L. Himalaya) mutants with altered grain morphology were isolated to investigate whether defects in grain development, possibly involving gibberellins (GAs) and abscisic acid, would lead to altered patterns of [alpha]-amylase gene expression. Following treatment with sodium azide, 75 mutants, typically showing grain shriveling, were identified. At grain maturity 15 of the 75 mutants had higher [alpha]-amylase activities in shriveled grains compared with either phenotypically normal grains that developed on the same heterozygous plant or with grains of cv Himalaya. Studies of four of these mutants demonstrated increased levels of both high- and low-isoelectric point [alpha]-amylase isozymes midway through grain development. This category of mutant has been designated pga, for premature grain [alpha]-amylase. One such mutant (M326) showed an endosperm-determined inheritance pattern. When crossed into a (GA-deficient) dwarfing background there was a 10- to 20-fold reduction in [alpha]-amylase activity, suggesting a requirement for GA biosynthesis. Endogenous GAs and abscisic acid were quantified by combined gas chromatography-specific ion monitoring in normal and mutant grains of heterozygous M326 plants during the period of [alpha]-amylase accumulation. Mutant grains had significantly higher (5.8-fold) levels of the bioactive GA1 compared with normal grains but much lower (approximately 10-fold) levels of the 2[beta]-hydroxylated ("inactive") GAs, typical of developing barley grains (e.g. GA8, GA34, GA48). We propose that a reduced extent of 2[beta]-hydroxylation in the mutant grains results in an increased level of GA1, which is responsible for premature [alpha]-amylase gene expression.  相似文献   

15.
The molecular mechanisms that initiate and control the metabolic activities of seed germination are largely unknown. Sugars may play important roles in regulating such metabolic activities in addition to providing an essential carbon source for the growth of young seedlings and maintaining turgor pressure for the expansion of tissues during germination. To test this hypothesis, we investigated the physiological role of sugars in the regulation of -amylase gene expression and carbohydrate metabolism in embryo and endosperm of germinating rice seeds. RNA gel blot analysis revealed that in the embryo and aleurone cells, expression of four -amylase genes was differentially regulated by sugars via mechanisms beyond the well-known hormonal control mechanism. In the aleurone cells, expression of these -amylase genes was regulated by gibberellins produced in the embryo and by osmotically active sugars. In the embryo, expression of two -amylase genes and production of gibberellins were transient, and were probably induced by depletion of sugars in the embryo upon imbibition, and suppressed by sugars influx from the endosperm as germination proceeded. The differential expression of the four -amylase genes in the embryo and aleurone cells was probably due to their markedly different sensitivities to changes in tissue sugar levels. Our study supports a model in which sugars regulate the expression of -amylase genes in a tissue-specific manner: via a feedback control mechanism in the embryo and via an osmotic control mechanism in the aleurone cells. An interactive loop among sugars, gibberellins, and -amylase genes in the germinating cereal grain is proposed.  相似文献   

16.
During germination of barley grains, the appearance of DNA fragmentation started in aleurone cells near the embryo and extended to the distal end in a time-dependent manner. DNA fragmentation was demonstrated to occur only after the expression of -amylase mRNA in the aleurone layer. In addition, cell wall degradation started in cells near the embryo on the sides facing the endosperm. Subsequently cell wall degradation extended to the lateral cell walls and to cells more to the distal end of the grain. A typical alteration of the nucleus was observed by electron microscopy and an almost complete degradation of DNA was found in the nucleus while the nuclear envelope remained intact. The results indicate that programmed cell death occurred in aleurone cells during germination. A model is proposed for the regulation of programmed cell death in aleurone cells during germination involving ABA levels and cell wall degradation.  相似文献   

17.
Calmodulin activity was detected and assayed in barley aleuronecells. The effect of calmodulin antagonists on GA3-induced enzymesynthesis and secretion in barley aleurone layers was also investigated.These calmodulin antagonists (chlorpromazine, haloperidol) inhibitedonly GA2-induced -amylase secretion. This inhibitory effectwas intensified after 6 h of GA3-incubation. This leads us tosuggest that some calmodulin-controlled mechanism is involvedin GA2-induced -amylase secretion. Hordeum vulgare L., barley aleurone cells, gibberellic acid, -amylase secretion, calmodulin, calmodulin antagonist  相似文献   

18.
19.
20.
The addition of abscisic acid to barley (Hordeum vulgare L. cv. Himalaya) aleurone layers at the same time as gibberellic acid completely prevents the gibberellin-induced increases in the percentage of polysomes, the formation of polyribosomes, and the synthesis of α-amylase, even when the molar concentration of gibberellic acid is four times greater than the concentration of abscisic acid. The addition of abscisic acid to aleurone cells producing α-amylase (midcourse addition) inhibits the further synthesis of α-amylase and decreases the percentage of polysomes but does not change the number of ribosomes per cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号