首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of sulphate nutrition on arsenic (As) concentration, photosynthetic and chlorophyll fluorescence parameters of rice was investigated in hydroponically grown rice seedlings (Oryza sativa L.), using three sulphate levels (1.8 μM, 0.7 mM, or 1.5 mM). The results showed that sulphate deficiency decreased As accumulation in root, but increased the translocation of As from root to shoot. Sulphate deficiency reduced maximum quantum yield (Fv/Fm), minimum fluorescence and electron transport rate (ETR) of a dark-adapted leaf. Compared with low sulphate treatments (1.8 μM), significant increases were observed in the parameters of rapid light curves, rETRmax and I k of photosystem I (PSI) and photosystem II (PSII) of rice grown in the high sulphate treatments (1.5 mM) regardless of As additions. Therefore, an adequately high sulphate supply may result in less As translocation from root to shoot, and protecting the reaction pathways of PSI and PSII of rice seedlings grown in higher As-contaminated medium.  相似文献   

2.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

3.
The relative stimulation of photosynthesis by elevated carbon dioxide in C3 species normally increases strongly with increasing temperature. This results from the kinetic characteristics of Rubisco, and has potentially important implications for responses of vegetation to increasing atmospheric carbon dioxide. It is often assumed that because Rubisco characteristics are conservative, all C3 species have the same temperature dependence of the response of photosynthesis to elevated carbon dioxide. However, in this field study of Taraxacum officinale, there were no significant differences in the relative stimulation of photosynthesis by elevated carbon dioxide among days with temperatures ranging from 15 to 34 °C. Nevertheless, short-term measurements indicated a strong temperature dependence of the stimulation. This suggested that acclimation to temperature caused the lack of variation in the seasonal data. Experiments in controlled environments indicated that complete acclimation of the relative stimulation of photosynthesis by elevated carbon dioxide occurred for growth temperatures of 10 – 25 °C. The apparent specificity of Rubisco for carbon dioxide relative to oxygen at 15 °C, as assayed in vivo by measurements of the carbon dioxide concentration at which carboxylation equalled oxygenation, also varied with growth temperature. Changes in the apparent specificity of Rubisco accounted for the acclimation of the temperature dependence of the relative stimulation of photosynthesis by elevated carbon dioxide. It is premature to conclude that low temperatures will necessarily reduce the relative stimulation of photosynthesis caused by rising atmospheric carbon dioxide. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
An assessment of the effects of arbuscular mycorrhizal (AM) infection on photosynthesis, carbon (C) allocation, translocation and biomass production of cucumber, grown in sand culture, was made using a previously determined phosphorus (P) supply (0·13 mol m?3 P) which had a significant impact on AM infection. Separation of a direct effect of AM infection from an indirect one due to an enhanced leaf P status was achieved using a comparable non‐mycorrhizal treatment (NAM + P) supplemented with extra P (0·19 mol m?3 P). Total leaf P concentration, specific leaf mass, photosynthetic capacity, and incorporation of 14C into non‐structural carbohydrate pools were dependent on leaf age. Both maximum and ambient photosynthetic rates were significantly higher in the youngest fully expanded leaves from AM and NAM + P plants which also had the higher leaf P concentrations. There were no differences in the total concentrations of starch, sucrose, raffinose or stachyose in young or old leaves among AM, non‐mycorrhizal (NAM) and NAM + P treatments. However, younger leaves of NAM plants showed a shift in 14C‐partitioning from stachyose and raffinose synthesis to starch accumulation. Determination of ADP‐glucose pyrophosphorylase (AGPase), sucrose synthase and sucrose phosphate synthase enzyme activities revealed that only AGPase activity was correlated with the increased incorporation rate of 14C into starch in young leaves of NAM plants. Although there were significant AM‐specific effects on C translocation to the root system, AM plants had similar rate of photosynthesis to NAM + P plants. These results suggest that the increase in photosynthetic rate in leaves of AM‐infected cucumber was due to an increased P status, rather than a consequence of a mycorrhizal ‘sink’ for assimilates.  相似文献   

5.
钾是植物生长发育所必需的大量元素,是与氮、磷并列的植物营养的“三大要素”之一。不同植物种类或同种类植物的不同品种之间钾营养效率的差异非常显著,这为植物钾营养性状的遗传改良提供了科学依据  相似文献   

6.
Na několika systematicky r?zných vodních rostlinách jsem sledoval p?ímé a krátkodobé p?sobení humátu na fotosynthesu. Z pokus? na rodech Potamogeton, Nuphar a Vallisneria vyplývá, ?e intensita fotosynthesy listù ovlivněných humátem a list? kontrolních z?stává stejná, ?e tedy humát p?i krâtkodobé aplikaci fotosynthesu neovlivňuje. Shodné výsledky jsem dostal i u ?asy Scenedesmus obliquus, kde se rozdíly za?aly projevovat a? po několika dnech p?sobení. Nelze ani v těchto p?ípadech mluvit o ovlivnění vlastního pochodu fotosynthesy, humát tedy p?sobí na fotosynthesu pouze nep?ímo.  相似文献   

7.
A model is deveolped relating photosynthesis taking place in successive layers of the canopy of a wheat crop to the intensity of the radiation incident on the crop, the elevation of the sun, and to the angle to the horizontal and photosynthetic area of ears, leaves and leaf sheaths. The validity of the model is tested by comparing the rate of photosynthesis, pattern of translocation and solid geometry of a semi-dwarff wheat (TL 365a/25) with those of a variety of conventional height (Cappelle-Deprez). The model gives realistic estimates of crop yield and indicates that the greater yield of the semi-dwarf selection is caused by faster photosynthesis, despite less photosynthetic surfaces of ears and leaves. It also indicates that selection for erect leaves may lead to further increases in yield.  相似文献   

8.
The mechanism of proton translocation in respiration and photosynthesis   总被引:1,自引:0,他引:1  
  相似文献   

9.
To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.  相似文献   

10.
11.
12.
13.
Potassium nutrition and translocation in sugar beet   总被引:2,自引:4,他引:2       下载免费PDF全文
The effect of increased net foliar K+ accumulation on translocation of carbon was studied in sugar beet (Beta vulgaris, L. var. Klein E and US H20) plants. Net accumulation of recently absorbed K+ was studied by observing arrival of 42K+ per unit area of leaf. Labeled K+ was added to give an initial concentration at 2 or 10 millimolar K+ in mineral nutrient solution. Because the newly arrived K+ constitutes a small part of the total leaf K+ in plants raised in 10 millimolar K+, export of 42K+ by phloem was negligible over the 2- to 3-day period; consequently, accumulation is a measure of arrival in the xylem. In leaves from plants in 2 millimolar K+, export by the phloem was estimated to be of the same order as import by the xylem; K+ per area was observed to remain at a steady-state level. Increasing the supply of K+ to 10 millimolar caused arrival in the xylem to increase 2- to 3-fold; K+ per area increased gradually in the mature leaves. Neither net carbon exchange nor translocation of sugar increased in response to a faster rate of arrival of K+ over a 6- to 8-hour period. In the absence of short-term effects, it is suggested that K+-promoted increase in synthetic metabolism may be the basis of the increased carbon assimilation and translocation in plants supplied with an above-minimal level of K+.  相似文献   

14.
Analyses of chlorophyll fluorescence and photosynthetic oxygen evolution were conducted to understand why cold-hardened winter rye (Secale cereale L.) is more resistant to photoinhibition of photosynthesis than is non-hardened winter rye. Under similar light and temperature conditions, leaves of cold-hardened rye were able to keep a larger fraction of the PS II reaction centres in an open configuration, i.e. a higher ratio of oxidized to reduced QA (the primary, stable quinone acceptor of PSII), than leaves of non-hardened rye. Three fold-higher photon fluence rates were required for cold-hardened leaves than for non-hardened leaves in order to establish the same proportion of oxidized to reduced QA. This ability of cold-hardened rye fully accounted for its higher resistance to photoinhibition; under similar redox states of qa cold-hardened and non-hardened leaves of winter rye exhibited similar sensitivities to photoinhibition. Under given light and temperature conditions, it was the higher capacity for light-saturated photosynthesis in cold-hardened than in non-hardened leaves, which was responsible for maintaining a higher proportion of oxidized to reduced QA. This higher capacity for photosynthesis of cold-hardened leaves also explained the increased resistance of photosynthesis to photoinhibition upon cold-hardening.Abbreviations Fm and F'm fluorescence when all PSII reaction centres are closed in dark- and light-acclimated leaves, respectively - Fo and F'o fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fv variable fluorescence (F'm-F'o) under steady-state light conditions - Fv/Fm the ratio of variable to maximum fluorescence as an expression of the maximum photochemical yield of PSII in dark-acclimated leaves - QA the primary, stable, quinone electron acceptor of PSII - qN non-photochemical quenching of fluorescence due to high energy state (pH) - qp photochemical quenching of fluorescence - RH cold-hardened rye - RNH non-hardened rye This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and by the Swedish Natural Science Research Council.  相似文献   

15.
When parasitizing Coleus blumei Benth., grown in quartz sandculture and fed with 0.2, 1 or 5 mM nitrate, the biomass productionof Cuscuta reflexa Roxb. was inhibited to a similar extent asthat of the host supplied limiting concentrations of nitrate.In the presence of Cuscuta the growth and dry matter increaseof the host plant was severely inhibited. However, dry matterproduction of host plus parasite was only slightly less thanor at 0.2 mM nitrate almost the same as that of uninfected Coleusplants. Under all conditions of nitrate nutrition, parasitismby Cuscuta led to a substantial increase in photosynthesis inhost leaves under light-saturating conditions and in transpiration.Particularly with 0.2 mM and mM  相似文献   

16.
17.
18.
19.
20.
Summary Growth of hydroponically cultivated birch seedlings (Betula pendula Roth.) at sub- and supra-optimum potassium supply rates was investigated. Potassium was supplied either as a relative addition rate (r k = 5, 10, 15 and 20% increase day-1) or as fixed concentrations (0.2, 3, 6, 12 and 15 mM) in the culture solution. After an acclimation period the growth rate of the seedlings in the suboptimum treatments reached values close to the treatment variable, the relative rate of K-addition. Deficiency symptoms, in the form of chlorosis and necroses along the leaf margins, developed initially in all suboptimum treatments, but very few new symptoms appeared once the seedlings had reached the phase of steady-state nutrition and growth. At supra-optimum K-supply levels, i.e. at 0.2–15 mM K in the culture solution, no symptoms of deficiency or toxicity developed, and the relative growth rate of the seedlings remained maximum. The relative growth rate of the seedlings was linearly related to the plant K-status for K contents ranging from 0.2 to 1.0% of dry weight (DW). At higher internal K-concentrations, 1.0–3.0% DW, no further increase in relative growth rate was achieved. A shortage of K resulted in a decrease in the net assimilation rate. This effect was counterbalanced by the absence of shift in he leaf weight ratio as well as by the production of relatively thin leaves. The fraction of dry matter allocated to roots decreased in K-limited plants, as did the leaf contents of soluble carbohydrates and starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号