首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Peroxisome proliferator-activated receptor (PPAR) α, βδ and γ are nuclear receptors activated by fatty acid metabolites. An anti-inflammatory role for these receptors in airway inflammation has been suggested.

Methods

Nasal biopsies were obtained from 10 healthy volunteers and 10 patients with symptomatic allergic rhinitis. Nasal polyps were obtained from 22 patients, before and after 4 weeks of local steroid treatment (fluticasone). Real-time RT-PCR was used for mRNA quantification and immunohistochemistry for protein localization and quantification.

Results

mRNA expression of PPARα, PPARβδ, PPARγ was found in all specimens. No differences in the expression of PPARs were obtained in nasal biopsies from patients with allergic rhinitis and healthy volunteers. Nasal polyps exhibited lower levels of PPARα and PPARγ than normal nasal mucosa and these levels were, for PPARγ, further reduced following steroid treatment. PPARγ immunoreactivity was detected in the epithelium, but also found in smooth muscle of blood vessels, glandular acini and inflammatory cells. Quantitative evaluation of the epithelial immunostaining revealed no differences between nasal biopsies from patients with allergic rhinitis and healthy volunteers. In polyps, the PPARγ immunoreactivity was lower than in nasal mucosa and further decreased after steroid treatment.

Conclusion

The down-regulation of PPARγ, in nasal polyposis but not in turbinates during symptomatic seasonal rhinitis, suggests that PPARγ might be of importance in long standing inflammations.  相似文献   

3.
Fatty acids bind to and regulate the activity of peroxisome proliferator-activated (PPAR) and liver X receptors (LXR). However, the role lipid metabolism plays in the control of intracellular fatty acid ligands is poorly understood. We have identified two strains of HEK293 cells that display differences in fatty acid regulation of nuclear receptors. Using full-length and Gal4-LBD chimeric receptors in functional assays, 20:4,n6 induced PPARalpha activity approximately 2.2-fold and suppressed LXRalpha activity by 80% (ED50 approximately 25-50 microm) in HEK293-E (early passage) cells but had no effect on PPARalpha or LXRalpha receptor activity in HEK293-L (late passage) cells. LXRbeta was insensitive to fatty acid regulation in both HEK293 strains. Metabolic labeling studies using [14C]20:4,n6 (at 100 microm) indicated that the uptake of 20:4,n6 and its assimilation into triacylglycerol, diacylglycerol, and polar lipids revealed no difference between the two strains. Such treatment increased total cellular 20:4,n6 ( approximately 11-fold) and its elongation product, 22:4,n6 ( approximately 3.6-fold), within 6 h. Non-esterified 20:4,n6 and 22:4,n6 represented 相似文献   

4.
5.
6.
7.
8.
9.
10.
We investigated the spatiotemporal distributions of the different peroxisome proliferator-activated receptor (PPAR) isotypes (alpha, beta, and gamma) during development (Week 7 to Week 22 of gestation) of the human fetal digestive tract by immunohistochemistry using specific polyclonal antibodies. The PPAR subtypes, including PPARgamma, are expressed as early as 7 weeks of development in cell types of endodermal and mesodermal origin. The presence of PPARgamma was also found by Western blotting and nuclease-S1 protection assay, confirming that this subtype is not adipocyte-specific. PPARalpha, PPARbeta, and PPARgamma exhibit different patterns of expression during morphogenesis of the digestive tract. Whatever the stage and the gut region (except the stomach) examined, PPARgamma is expressed at a high level, suggesting some fundamental role for this receptor in development and/or physiology of the human digestive tract.  相似文献   

11.
Peroxisome proliferator-activated receptors (PPARs) play very important roles in various biological phenomena such as regulation of lipid metabolism, homeostasis, cell differentiation and proliferation, in a variety of organs and tissues. However, their functions in the development of the digestive organs have not been studied yet, although it has been supposed that they are involved in the tumor development and regression of digestive organs. To provide fundamental data to analyze functions of PPARs in the developing digestive organs in the chicken embryos, we performed thorough analysis of expression of PPARalpha, beta (delta) and gamma in the esophagus, proventriculus (glandular stomach), gizzard (muscular stomach), small and large intestines from early developmental stages to post hatch stages. The results showed that each PPAR is expressed in spatio-temporally regulated manner. In general, PPARbeta is widely expressed among digestive organs whereas PPARalpha and gamma showed restricted expression. In the intestine, all PPARs are expressed after hatch, indicating that they play important roles in the physiology of the adult intestine.  相似文献   

12.
13.
14.
Dietary long chain fatty acids and thiazolidinediones act as potent activators of adipogenesis in established preadipose cell lines. High concentrations of thiazolidinediones have also been shown to induce terminal differentiation of non-preadipose cells, such as fibroblasts and myoblasts, into adipose-like cells. This transdifferentiation was observed in both rodent and human myoblasts. In this report, we show that PPARdelta mediates some of the effects exerted by long chain fatty acids on myogenesis and adipogenesis. Activation of PPARdelta by long chain fatty acids impairs the expression of the determination factor MyoD1 and alpha-actin, abolishes the development of multinucleated myotubes, and in parallel induces the expression of PPARgamma gene, a master regulator of adipogenesis. Ectopic expression of PPARdelta in C2C12 myoblasts potentiated the fatty acid-induced expression of adipogenic markers, while expression of a dominant negative PPARdelta mutant exerted opposite effects. Furthermore, a sequential activation of first PPARdelta with long chain fatty acids and then PPARgamma with thiazolidinediones is required for adipogenesis in C2C12 myoblasts. This study demonstrates that PPARdelta, at least in part, is responsible for the dual effects of long chain fatty acids as inhibitors of myogenesis and inducers of transdifferentiation into preadipose-like cells.  相似文献   

15.
16.
17.
The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids (FAs) that regulate glucose and lipid homeostasis. We report the crystal structure of the PPAR delta ligand-binding domain (LBD) bound to either the FA eicosapentaenoic acid (EPA) or the synthetic fibrate GW2433. The carboxylic acids of EPA and GW2433 interact directly with the activation function 2 (AF-2) helix. The hydrophobic tail of EPA adopts two distinct conformations within the large hydrophobic cavity. GW2433 occupies essentially the same space as EPA bound in both conformations. These structures provide molecular insight into the propensity for PPARs to interact with a variety of synthetic and natural compounds, including FAs that vary in both chain length and degree of saturation.  相似文献   

18.
Peroxisome proliferator-activated receptor (PPAR) isoforms (α and γ) are known to beexpressed in pancreatic islets as well as in insulin-producing cell lines.Ligands of PPAR have been shoWn toenhance glucose-induced insulin secretion in rat pancreatic islets.However,their effect on insulin secretionis still unclear.To understand the molecular mechanism by which PPAR7 exerts its effect on glucose-induced insulin secretion,we examined the endogenous activity of PPAR isoforms,and studied the PPARyfunction and its target gene expression in INS-1 cells.We found that:(1)endogenous PPARγ was activatedin a ligand-dependent manner in INS-1 cells;(2)overexpression of PPARy in the absence of PPARγ ligandsenhanced glucose-induced insulin secretion,which indicates that the increased glucose-induced insulin secretionis a PPARγ-mediated event;(3)the addition of both PPARγ and retinoid X receptor (RXR) ligands showed asynergistic effect on the augmentation of reporter activity,suggesting that the hetero-dimerization of PPAR7and RXR is required for the regulation of the target genes;(4)PPARs upregulated both the glucose transporter2 (GLUT2) and Cbl-associated protein (CAP) genes in INS-1 cells.Our findings suggest an importantmechanistic pathway in which PPARγ enhances glucose-induced insulin secretion by activating the expressionof GLUT2 and CAP genes in a ligand-dependent manner.  相似文献   

19.
Kato K  Oka Y  Park MK 《Zoological science》2008,25(5):492-502
Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号