首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We sought to determine the impact of bovine IFN-gamma on the interaction between Mycobacterium bovis and bovine macrophages. Bovine macrophages released small amounts of nitric oxide (NO), TNF-alpha, IL-1beta and IL-12 upon infection with bacille Calmette-Guérin (BCG). Prior pulsing of cells with IFN-gamma significantly enhanced the release of NO and IL-12. Infection of bovine macrophages with virulent M. bovis led to the release of higher levels of pro-inflammatory mediators, compared to levels released upon BCG infection. IFN-gamma treatment of macrophages enhanced the release of pro-inflammatory mediators, but did not modify bacterial replication in M. bovis-infected macrophages. Treatment of macrophages with a combination of IFN-gamma and LPS led to a reduction in bacterial replication. Infected cells treated with IFN-gamma/LPS progressed mostly through an apoptotic pathway, whereas untreated infected cells eventually died by necrosis. Agents that prevented the acquisition of bacteriostatic activity by activated macrophages also prevented the induction of apoptosis in infected macrophages (IL-10 and neutralizing anti-TNF-alpha). We conclude that virulent M. bovis is a major determinant of release of pro-inflammatory cytokines by macrophages. IFN-gamma amplifies the macrophage cytokine release in response to M. bovis. Induction of apoptosis is closely linked to the emergence of macrophage resistance to M. bovis replication, which is dependent on endogenous TNF-alpha release.  相似文献   

3.
4.
Expression of the c-fos, c-myc, and c-fms proto-oncogenes has been studied in thioglycollate-elicited murine peritoneal macrophages after exposure to lipopolysaccharide (LPS). After incubation with LPS (20 ng/ml), a transient and rapid induction of the expression of c-fos and c-myc oncogenes could be observed, whereas the RNA levels for c-fms were not affected. Treatment with lipid A, the active moiety of the LPS molecule, increased the c-fos and c-myc expression to a comparable degree. Similar induction of c-fos and c-myc was observed after treatment with phorbol myristate acetate, suggesting that this effect of LPS on murine macrophages might be mediated through stimulation of protein kinase C. Under similar experimental conditions, LPS treatment of macrophages did not trigger DNA synthesis. Treatment with LPS blocked DNA synthesis in macrophages treated with L cell-conditioned medium containing colony-stimulating factor. Thus changes in c-fos and c-myc expression may be elements in the complex series of biochemical events that contribute to macrophage activation and are not necessarily related to induction or priming for cellular proliferation.  相似文献   

5.
Fibrin deposition is an important histopathologic feature of inflammation and is mediated, in part, by monocyte/macrophage procoagulants. rIFN gamma acted in synergy with suboptimal levels of bacterial LPS by priming thioglycollate-induced mouse peritoneal exudate cells (TG-PEC) to express high levels of surface procoagulant. TFN-alpha beta, TFN-alpha, IL-1, either alone or in combination with LPS or IFN-gamma, had no effect on macrophage procoagulant activity expression. In contrast to the dramatic increases of macrophage procoagulant activity induced by IFN-gamma/LPS, on exudate macrophages, normal peritoneal macrophages, or peripheral blood monocytes were unresponsive suggesting that the state of activation of the macrophage determines reactivity. IFN-gamma induced a Factor VIIa-like activity detected only after cell disruption. Synergy between LPS and IFN-gamma-induced procoagulants may occur as the result of the assembly of the thromboplastin (induced by LPS), Factor VII/VIIa complex on the macrophage surface. RNA synthesis was required for procoagulant induction. Procoagulant expression may, as for other cytokines involved in inflammatory responses, be regulated by short lived repressor proteins as low dose cycloheximide superinduced procoagulant responses to both LPS and IFN-gamma and caused the extracellular expression of procoagulant in response to IFN-gamma. This study suggests an important role for IFN-gamma in the assembly of components of the extrinsic coagulant cascade on the macrophage surface. The synergy between IFN-gamma and LPS may moderate macrophage-initiated fibrin deposition characteristic of inflammatory responses.  相似文献   

6.
Changes in the concentration of cytosolic Ca2+ are known to affect various macrophage functions; in particular, exposure in vitro to the Ca2+ ionophore A23187 primes macrophages for tumor cell killing. In the present report, it is shown that treatment with this ionophore similarly mimics IFN-gamma as a priming signal for induction of microbicidal activity. Incubation of mouse bone marrow-derived macrophages with 10(-7) to 10(-6) M A23187 (in the presence of Ca2+) led to intracellular killing of the protozoan parasite Leishmania enriettii within 24 h, provided LPS (1 ng/ml) was also present; no microbicidal activity was observed using either compound alone. A 4-h exposure to the ionophore in the presence of Ca2+ (priming phase) was sufficient to induce leishmanicidal activity upon reincubation with LPS, here acting as a necessary second signal. Addition of EGTA during the priming phase blocked intracellular killing upon subsequent LPS treatment; microbicidal activity could be restored by excess Ca2+, but not Mg2+, suggesting that changes in the concentration of cytosolic Ca2+ are sufficient to mediate the molecular events that lead to acquisition of microbicidal potential. Ionophore-induced leishmanicidal activity was paralleled by a stimulation of the hexosemonophosphate shunt pathway and production of nitrites, which are biochemical correlates of the activated state. In addition, sequential exposure to A23187 and LPS markedly stimulated macrophages to release TNF and PGE2, two agents thought to act as modulators of macrophage activation.  相似文献   

7.
IFN-gamma is an important mediator of cellular resistance against microbial pathogens and tumor cells due in part to its potent capacity to activate macrophages for enhanced cytotoxicity. The present study demonstrates that TNF-alpha regulates the expression of enhanced antimicrobial activity by triggering IFN-gamma primed macrophages to kill or inhibit intracellular Toxoplasma gondii. Resident mouse macrophages stimulated with rIFN-gamma at levels up to 2500 U/ml failed to display enhanced antitoxoplasmal activity when cultured in vitro under low endotoxin conditions (less than 10 pg/ml), but were triggered by addition of small amounts of LPS (0.1 ng/ml). A similar requirement for LPS as a second signal necessary to trigger antitoxoplasmal activity was observed when IFN-gamma was administered to mice in vivo. The essential nature of this triggering step allowed us to explore the role of cytokines that act as endogenous regulators of macrophage activation. rTNF-alpha, although unable to confer antitoxoplasmal activity when used alone to treat macrophages, was capable of triggering IFN-gamma-primed macrophages cultured under low endotoxin conditions. The ability of TNF-alpha to trigger IFN-gamma-primed macrophages was blocked by rabbit anti-TNF-alpha polyclonal antisera but was not affected by polymyxin B indicating that TNF-alpha triggering was not due to contamination with LPS. Collectively, these findings demonstrate that TNF-alpha performs an important regulatory role in the expression of enhanced anti-microbial activity by IFN-gamma-primed macrophages.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) is known phenomenologically as a negative regulator of several functions of mouse bone marrow macrophages. The studies reported here extend this list by showing that TGF-beta can suppress cytolytic activity of mouse bone marrow culture-derived macrophages that already have become activated by IFN-gamma and LPS for tumor cell killing, as well as confirm that this cytokine can interfere with the induction of activation. Suppression was caused by a shift in the dose response curve for IFN-gamma rather than absolute inhibition; the 50% effective dose for IFN-gamma was increased approximately fourfold by treatment with TGF-beta. TGF-beta also decreased the absolute number of IFN-gamma R on the surfaces of pretreated macrophages by approximately 30 to 35%, without altering the affinity with which IFN-gamma bound. The increased concentration of IFN-gamma needed to produce the higher level of receptor occupancy explained the observed shift in the IFN-gamma dose response curve. These results suggest that TGF-beta mediates its negative regulatory effects on macrophage activation by interfering with coupling of the IFN-gamma R to the pathways that induce and maintain macrophage activation for tumor cell killing. Such effects are consistent with the view that TGF-beta is a negative regulator of macrophage activation for tumor cell killing. Because of this fact, neoplastic cells that secrete this cytokine may have a distinct survival advantage.  相似文献   

9.
10.
We have shown previously that agonistic anti-CD40 mAb induced T cell-independent antitumor effects in vivo. In this study, we investigated mechanisms of macrophage activation with anti-CD40 mAb treatment, assessed by the antitumor action of macrophages in vitro. Intraperitoneal injection of anti-CD40 mAb into C57BL/6 mice resulted in activation of peritoneal macrophages capable of suppressing B16 melanoma cell proliferation in vitro, an effect that was greatly enhanced by LPS and observed against several murine and human tumor cell lines. Anti-CD40 mAb also primed macrophages in vitro to mediate cytostatic effects in the presence of LPS. The tumoristatic effect of CD40 ligation-activated macrophages was associated with apoptosis and killing of tumor cells. Activation of macrophages by anti-CD40 mAb required endogenous IFN-gamma because priming of macrophages by anti-CD40 mAb was abrogated in the presence of anti-IFN-gamma mAb, as well as in IFN-gamma-knockout mice. Macrophages obtained either from C57BL/6 mice depleted of T and NK cells by Ab treatment, or from scid/beige mice, were still activated by anti-CD40 mAb to mediate cytostatic activity. These results argued against the role of NK and T cells as the sole source of exogenous IFN-gamma for macrophage activation and suggested that anti-CD40 mAb-activated macrophages could produce IFN-gamma. We confirmed this hypothesis by detecting intracytoplasmic IFN-gamma in macrophages activated with anti-CD40 mAb in vivo or in vitro. IFN-gamma production by macrophages was dependent on IL-12. Taken together, the results show that murine macrophages are activated directly by anti-CD40 mAb to secrete IFN-gamma and mediate tumor cell destruction.  相似文献   

11.
Macrophage activation for tumor cell killing is a multistep pathway in which responsive macrophages interact sequentially with priming and triggering stimuli in the acquisition of full tumoricidal activity. A number of mediators have been identified which have activating capability, including in particular IFN-gamma and bacterial LPS. Although the synergistic functional response of normal macrophages to sequential incubation with these activation signals has been well-established, characterization of the intermediate stages in the activation pathway has been difficult. We have developed a model system for examination of various aspects of macrophage activation, through the use of the murine macrophage tumor cell line, RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both IFN-gamma and LPS in the development of tumor cytolytic activity. In addition, these cells can be stably primed by the administration of gamma-radiation. In the studies reported here, we have used RAW 264.7 cells treated with IFN-gamma alone or with IFN-gamma plus LPS to stimulate the production of rat mAb probes recognizing cell surface changes occurring during the activation process. In this way we have identified three Ag associated with intermediate stages of the activation process. One Ag, TM-1, is expressed on RAW 264.7 cells primed by IFN-gamma or gamma-radiation. This surface Ag thus identifies cells at the primed cell intermediate stage of the tumoricidal activation pathway regardless of the mechanism of activation. A second Ag, TM-2, is expressed on IFN-treated RAW 264.7 cells but not on RAW 264.7 cells primed with gamma-radiation alone. Expression of this Ag can be induced by treatment of irradiated cells with IFN-gamma, but is not induced by IFN-gamma treatment of a noncytolytic cell line, WEHI-3. This Ag thus appears to be an IFN-inducible cell surface protein associated specifically with macrophage activation for tumoricidal activity. Finally, Ag TM-3 is detectable on RAW 264.7 cells primed by either IFN-gamma or gamma-radiation, after subsequent triggering of the primed cells with LPS. The addition of the mAb recognizing this antigen to the function assay of tumor cell killing can inhibit they lytic activity of both triggered cells. Thus, this Ag may play a role in the antitumor effector functions of activated macrophages. Overall, the results suggest that these mAb can serve as useful tools for identification of molecules associated with the process of macrophage activation for tumor cell killing.  相似文献   

12.
Activation of macrophages is important in chronic inflammatory disease states such as atherosclerosis. Proinflammatory cytokines such as interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), or tumor necrosis factor-alpha can promote macrophage activation. Conversely, anti-inflammatory factors such as transforming growth factor-beta1 (TGF-beta1) can decrease proinflammatory activation. The molecular mediators regulating the balance of these opposing effectors remain incompletely understood. Herein, we identify Kruppel-like factor 4 (KLF4) as being markedly induced in response to IFN-gamma, LPS, or tumor necrosis factor-alpha and decreased by TGF-beta1 in macrophages. Overexpression of KLF4 in J774a macrophages induced the macrophage activation marker inducible nitric-oxide synthase and inhibited the TGF-beta1 and Smad3 target gene plasminogen activator inhibitor-1 (PAI-1). Conversely, KLF4 knockdown markedly attenuated the ability of IFN-gamma, LPS, or IFN-gamma plus LPS to induce the iNOS promoter, whereas it augmented macrophage responsiveness to TGF-beta1 and Smad3 signaling. The KLF4 induction of the iNOS promoter is mediated by two KLF DNA-binding sites at -95 and -212 bp, and mutation of these sites diminished induction by IFN-gamma and LPS. We further provide evidence that KLF4 interacts with the NF-kappaB family member p65 (RelA) to cooperatively induce the iNOS promoter. In contrast, KLF4 inhibited the TGF-beta1/Smad3 induction of the PAI-1 promoter independent of KLF4 DNA binding through a novel antagonistic competition with Smad3 for the C terminus of the coactivator p300/CBP. These findings support an important role for KLF4 as a regulator of key signaling pathways that control macrophage activation.  相似文献   

13.
Flow-cytometric analysis of mouse peritoneal macrophages (MΦ) stained with acridine orange defined three populations with increasing RNA content. Resident MΦ displayed variable bimodal distributions of low and intermediate cellular RNA content with high RNA content only observed after in vitro stimulation with fetal calf serum or/and bacterial lipopolysaccharide (LPS). In contrast, only few resident macrophages from the LPS nonresponder strain C3H/HeJ increased in RNA content upon LPS stimulation. Macrophages with high RNA content developed transiently after in vivo stimulation with either thioglycollate broth or paraffin oil. Proteose peptone-elicited macrophages transformed only after additional in vitro stimulation with fetal calf serum and/or LPS. The magnitude of the in vitro response upon stimulation, assessed as increasing percentage of either intermediate or high RNA macrophages, was dependent on the composition of the MΦ population at the onset of in vitro culture. Effective increase in cellular RNA content was always paralleled by improved adherence of plated macrophages to the culture vessel. In conclusion, flow-cytometric measurement of macrophage populations might become a useful tool to quantify macrophage activation or stimulation.  相似文献   

14.
Membrane-associated tumor necrosis factor (TNF) and soluble TNF were compared as to their lytic activities, and as to the kinetics of their expression by macrophages activated with LPS and/or IFN-gamma in the presence or absence of cycloheximide. EL 4 tumor cells, resistant and sensitive to lysis by recombinant TNF or membrane-associated TNF (paraformaldehyde (PF)-fixed activated macrophages) were used as targets. In the presence of cycloheximide the TNF-resistant S-EL4 cells were lysed by both TNFs. PF-fixed macrophages was cytolytic after 1 hr activation but not after 3 or more hours of activation. Their activity was totally inhibited by anti-TNF antibodies and was a composite of transmembrane (integral) TNF and soluble TNF conjugated to macrophage membrane TNF receptors. Treatment of the macrophages with glycine pH 3.0 buffer dissociated the conjugated TNF without affecting the integral membrane TNF. When macrophages were activated with LPS +/- IFN-gamma in the presence of cycloheximide or activated just with IFN-gamma their activity after fixation with paraformaldehyde was no longer detected. Nonfixed macrophages under these conditions still remained cytotoxic. Tumor cell susceptibility to membrane-associated TNF activity, in contrast to recombinant (soluble) TNF, was greatly reduced in the presence of nicotinamide, an inhibitor of ADP-ribosyltransferase, suggesting that the mechanisms of lysis by these TNFs may be different. The lytic activity of both TNFs was found to be receptor-dependent in that tumor cells, whose TNF binding sites were "down-regulated" by TPA, were rendered resistant to lysis by both membrane-associated and soluble TNFs.  相似文献   

15.
16.
We have examined the expression of inducible inflammatory genes in murine macrophages from different tissues and at different stages of inflammatory activity. Although i.v. administration of IFN-gamma (10,000 U/mouse) strongly induced expression of IP-10 mRNA in the adherent cell population of the spleen, thioglycollate-elicited peritoneal macrophages were essentially unresponsive at the same dose. In contrast, D3 mRNA was expressed in both cell populations. This differential sensitivity of IP-10 mRNA expression was not restricted to stimulation by IFN-gamma as it was also seen when LPS (25 micrograms/mouse) was administered i.v. Expression of JE and KC mRNA, which encode cytokines related to IP-10, were also differentially expressed in elicited peritoneal macrophages from mice injected with LPS. Differential sensitivity was at least partially related to the state of macrophage activation because IP-10 mRNA was highly inducible in resident but not thioglycollate-elicited peritoneal macrophages. The eliciting agent was also an important determinant because proteose-peptone-elicited peritoneal macrophages were nearly as sensitive as splenic macrophages with respect to expression of IP-10 mRNA. IFN-gamma treatment induced IP-10 and D3 mRNA rapidly and transiently with the same time course in the spleen. IP-10 mRNA was not induced by IFN-gamma in TG-elicited macrophages regardless of the time after treatment. This differential expression of IP-10 was a consequence of different concentration requirements for IFN-gamma in the two cell types; thioglycollate-elicited macrophages required five- to 10-fold more IFN-gamma than did resident cells to achieve comparable IP-10 mRNA levels whether the agent was provided in vitro or in vivo. Thus variable sensitivity for induction of IP-10 mRNA was a characteristic of the macrophage itself and was not mediated by other cellular or molecular elements present in the inflammatory peritoneal cavity. The reduced sensitivity to IFN-gamma or LPS for expression of IP-10, JE, and KC mRNA as compared with TNF-alpha or D3 mRNA suggests that this distinct pattern of regulation may be restricted to members of these two related cytokine gene families that exhibit cell-type specific chemoattractant activity.  相似文献   

17.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

18.
Desensitization of macrophages is important during the development of sepsis. It was our intention to identify mechanisms that promote macrophage deactivation upon contact with endotoxin (LPS) and interferon-gamma (IFN-gamma) in vitro. Macrophage activation was achieved with 12-O-tetradecanoylphorbol 13-acetate (TPA), and the oxidative burst (i.e., oxygen radical formation) was followed by oxidation of the redox-sensitive dyes hydroethidine and dichlorodihydrofluorescein diacetate. Prestimulation of macrophages for 15 h with a combination of LPS/IFN-gamma attenuated oxygen radical formation in response to TPA. Taking the anti-inflammatory properties of the peroxisome proliferator-activating receptorgamma (PPARgamma) into consideration, we established activation of PPARgamma in response to LPS/IFN-gamma by an electrophoretic mobility shift, supershift, and a reporter gene assay. The reporter contains a triple PPAR-responsive element (PPRE) in front of a thymidine kinase minimal promoter driving the luciferase gene. We demonstrated that PPRE decoy oligonucleotides, supplied in front of LPS/IFN-gamma, allowed a full oxidative burst to recover upon TPA addition. Furthermore, we suppressed the oxidative burst by using the PPARgamma agonists 15-deoxy-Delta12,14-prostaglandin J2, BRL 49653, or ciglitazone. No effect was observed with WY 14643, a PPARalpha agonist. We conclude that activation of PPARs, most likely PPARgamma, promotes macrophage desensitization, thus attenuating the oxidative burst. This process appears important during development of sepsis.  相似文献   

19.
Macrophage activation for tumor cell killing is a multistep pathway in which responsive macrophages interact sequentially with priming and triggering stimuli in the acquisition of full tumoricidal activity. Although this synergistic response of normal macrophages to sequential incubation with activation signals has been well established, characterization of the intermediate stages in this pathway has been difficult, due in large measure to the instability of the intermediate cell phenotypes. We have developed a model system for examination of macrophage-mediated tumor cell lysis, with the use of the murine macrophage tumor cell line RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both interferon-gamma (IFN-gamma, the priming signal) and bacterial lipopolysaccharide (LPS, the triggering signal) in the development of tumor cytolytic activity. In this system, the priming effects of IFN-gamma decay rapidly after withdrawal of this mediator and the cells become unresponsive to LPS triggering. We have recently observed that gamma-irradiation of the RAW 264.7 cells also results in development of a primed activation state for tumor cell killing. The effects of gamma-radiation on the RAW 264.7 cell line are strikingly similar to those resulting from incubation with IFN-gamma, with the exception that the irradiation-induced primed cell intermediate is stable and responsive to LPS triggering for at least 24 hr. Treatment with gamma-radiation also results in increased cell surface expression of major histocompatibility complex-encoded class I antigens; however, class II antigen expression is not induced. Irradiation-induced development of the primed phenotype is not solely the result of cytostatic effects as treatment of the cells with a radiomimetic drug, mitomycin C, results in decreases in [3H]thymidine incorporation that are similar to those observed after irradiation, without concomitant development of cytolytic potential. In addition, priming by gamma-radiation does not appear to be mediated by the release of soluble autoregulatory factors. This alternate pathway for induction of the primed macrophage activation state should serve as a useful tool for identification of molecules important to the functional potential of primed cells, and for elucidation of the biochemical mechanisms of the priming event in tumoricidal activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号