首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S A Moore  M N James  D J O'Kane    J Lee 《The EMBO journal》1993,12(5):1767-1774
The molecular structure of the luxF protein from the bioluminescent bacterium Photobacterium leiognathi has been determined by X-ray diffraction techniques and refined to a conventional R-factor of 17.8% at 2.3 A resolution. The 228 amino acid polypeptide exists as a symmetrical homodimer and 33% of the monomer's solvent-accessible surface area is buried upon dimerization. The monomer displays a novel fold that contains a central seven-stranded beta-barrel. The solvent-exposed surface of the monomer is covered by seven alpha-helices, whereas the dimer interface is primarily a flat surface composed of beta-strands. The protein monomer binds two molecules of flavin mononucleotide, each of which has C6 of the flavin isoalloxazine moiety covalently attached to the C3' carbon atom of myristic acid. Both myristyl groups of these adducts are buried within the hydrophobic core of the protein. One of the cofactors contributes to interactions at the dimer interface. The luxF protein displays considerable amino acid sequence homology with both alpha- and beta-subunits of bacterial luciferase, especially the beta-subunit. Conserved amino acid residues shared between luxF and the luciferase subunits cluster predominantly in two distinct regions of the luxF protein molecule. These homologous regions in the luciferase subunits probably share a three-dimensional fold similar to that of the luxF protein.  相似文献   

2.
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas.  相似文献   

3.
The crystal structures of highly thermostable xylose isomerases from Thermus thermophilus (TthXI) and Thermus caldophilus (TcaXI), both with the optimum reaction temperature of 90 degrees C, have been determined by X-ray crystallography. The model of TcaXI has been refined to an R-factor of 17.8 % for data extending to 2.3 A and that of TthXI to 17.1 % for data extending to 2.2 A. The tetrameric arrangement of subunits characterized by the 222-symmetry and the tertiary fold of each subunit in both TcaXI and TthXI are basically the same as in other xylose isomerases. Each monomer is composed of two domains. Domain I (residues 1 to 321) folds into the (beta/alpha)8-barrel. Domain II (residues 322 to 387), lacking beta-strands, makes extensive contacts with domain I of an adjacent subunit. Each monomer of TcaXI contains ten beta-strands, 15 alpha-helices, and six 310-helices, while that of TthXI contains ten beta-strands, 16 alpha-helices, and five 310-helices. Although the electron density does not indicate the presence of bound metal ions in the present models of both TcaXI and TthXI, the active site residues show the conserved structural features. In order to understand the structural basis for thermostability of these enzymes, their structures have been compared with less thermostable XIs from Arthrobacter B3728 and Actinoplanes missouriensis (AXI and AmiXI), with the optimum reaction temperatures of 80 degrees C and 75 degrees C, respectively. Analyses of various factors that may affect protein thermostability indicate that the possible structural determinants of the enhanced thermostability of TcaXI/TthXI over AXI/AmiXI are (i) an increase in ion pairs and ion-pair networks, (ii) a decrease in the large inter-subunit cavities, (iii) a removal of potential deamidation/isoaspartate formation sites, and (iv) a shortened loop.  相似文献   

4.
A multiple alignment of five (beta/alpha)8-barrel enzymes has been derived from their structure. The eight beta-strands and eight alpha-helices of the (beta/alpha)8-barrel are correctly aligned and the equivalenced residues in these regions fulfil similar structural roles. Each beta-strand has a central core of usually four residues, two residues contribute side-chains to the barrel core and the other two residues are involved in beta-strand/alpha-helix contacts. However, the fold imposes no constraints on the volumes of the residues at either a local or global level: the volume of the beta-barrel core varies between 1088 A3 in glycolate oxidase and 1571 A3 in taka-amylase. Sequence motifs derived from the multiple alignment were scanned against a database of 124 protein sequences, including 17 (beta/alpha)8-barrel enzymes. The results were evaluated in terms of the discrimination of (beta/alpha)8-barrel sequences and the quality of the alignments obtained. One motif was able to identify the top 12% of high scoring sequences as forming (beta/alpha)8-barrels with 50% accuracy and the bottom 50% of sequences as not being (beta/alpha)8-barrel proteins with 100% accuracy. However, in most instances the alignments were poor. The reasons for this are discussed with reference to the (beta/alpha)8-barrel proteins and the sequence motif method in general.  相似文献   

5.
The luxA and luxB genes of bioluminescent bacteria encode the alpha and beta subunits of luciferase, respectively. Sequences of the luxA and luxB genes of Xenorhabdus luminescens, the only terrestrial bioluminescent bacterium known, were determined and the amino acid sequence of luciferase deduced. The alpha subunit was found to contain 360 amino acids and has a calculated molecular weight of 41,005 Da, while the beta subunit contains 327 amino acids and has a calculated molecular weight of 37,684 Da. Alignment of this luciferase with the luciferases of three marine bacteria showed 196 (or 55%) conserved residues in the alpha subunit and 114 (or 35%) conserved residues in the beta subunit. The highest degree of homology between any two species was between the luciferases of X. luminescens and Vibrio harveyi with 84% identity in the alpha subunits and 59% identity in the beta subunits.  相似文献   

6.
Previously we have established that a highly reactive cysteinyl group on the alpha subunit is at the aldehyde site of the (alpha beta) dimeric Vibrio harveyi luciferase. Three isomeric bifunctional reagents have been synthesized and used to further delineate the luciferase aldehyde site. These probes differ in their relative positions of and distances between the two functional groups active in chemical and photochemical labelings, respectively. Each of the probes can effectively and reversibly inactivate luciferase by forming a disulfide linkage primarily to the reactive cysteinyl residue. Upon subsequent photolysis, a diazoacetate arm in each probe was activated for photochemical labeling of amino acid residues within reach. After reductive regeneration of the reactive cysteinyl residue, 0.35-0.40 probe per dimeric luciferase was found to have been photochemically incorporated, correlating well with the degree of irreversible enzyme inactivation. Low but significant amounts of the three isomeric probes initially attached to the alpha reactive cysteine through a disulfide have been found to photochemically tag certain residues on beta. The latter residues are estimated to be no more than 8-11 A away from the alpha reactive cysteine. Thus the reactive cysteinyl residue, and hence the aldehyde site, must be at or near the alpha beta subunit interface. Furthermore, the structural integrity of the microenvironment surrounding this reactive cysteinyl residue is crucial to luciferase activity. An HPLC method for the isolation of luciferase alpha and beta subunits has also been developed.  相似文献   

7.
Immobilized luciferase was studied with regard to its reactivity and subunit functions. When immobilized on a matrix (Sepharose 6B), neither the alpha nor the beta subunit alone exhibited luciferase activity. However, for both subunits (so attached), denaturation followed by renaturation in the presence of the second subunit resulted in the recovery of activity on the matrix. It was thus confirmed that both of the two different subunits (alpha and beta) are required for luciferase activity, even after immobilization. Recovery of activity was approximately the same or slightly less with alpha-immobilized luciferase compared with the beta-immobilized enzyme under our experimental conditions. Generally, immobilized luciferase exhibited both a lower FMNH2 binding affinity and maximum light emission activity in comparison with free native luciferase, but surprisingly, it exhibited no change in the rate constant for the luminescence, this being a measure of the catalytic turnover time. The alpha-subunit-immobilized (renatured with beta) luciferase possessed a lower FMNH2 binding affinity compared with beta-subunit-immobilized (renatured with alpha) luciferase. Since the protein attachment to the CNBr-activated Sepharose 6B occurs by way of an amino group of luciferase, it was suggested that the binding of FMNH2 on luciferase, but not the subsequent catalytic steps, is dependent upon some exposed amino groups on both alpha and beta subunits.  相似文献   

8.
The three-dimensional structure of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium has been determined by x-ray crystallography at 2.5 A resolution. The four polypeptide chains are arranged nearly linearly in an alpha beta beta alpha order forming a complex 150 A long. The overall polypeptide fold of the smaller alpha subunit, which cleaves indole glycerol phosphate, is that of an 8-fold alpha/beta barrel. The alpha subunit active site has been located by difference Fourier analysis of the binding of indole propanol phosphate, a competitive inhibitor of the alpha subunit and a close structural analog of the natural substrate. The larger pyridoxal phosphate-dependent beta subunit contains two domains of nearly equal size, folded into similar helix/sheet/helix structures. The binding site for the coenzyme pyridoxal phosphate lies deep within the interface between the two beta subunit domains. The active sites of neighboring alpha and beta subunits are separated by a distance of about 25 A. A tunnel with a diameter matching that of the intermediate substrate indole connects these active sites. The tunnel is believed to facilitate the diffusion of indole from its point of production in the alpha subunit active site to the site of tryptophan synthesis in the beta active site and thereby prevent its escape to the solvent during catalysis.  相似文献   

9.
The amino acid sequences of the a subunits of tryptophan synthase from ten different microorganisms were aligned by standard procedures. The alpha helices, beta strands and turns of each sequence were predicted separately by two standard prediction algorithms and averaged at homologous sequence positions. Additional evidence for conserved secondary structure was derived from profiles of average hydropathy and chain flexibility values, leading to a joint prediction. There is good agreement between (1) predicted beta strands, maximal hydropathy and minimal flexibility, and (2) predicted loops, great chain flexibility, and protein segments that accept insertions of various lengths in individual sequences. The a subunit is predicted to have eight repeated beta-loop-alpha-loop motifs with an extra N-terminal alpha helix and an intercalated segment of highly conserved residues. This pattern suggests that the territory structure of the a subunit is an eightfold alpha/beta barrel. The distribution of conserved amino acid residues and published data on limited proteolysis, chemical modification, and mutagenesis are consistent with the alpha/beta barrel structure. Both the active site of the a subunit and the combining site for the beta 2 subunit are at the end of the barrel formed by the carboxyl-termini of the beta strands.  相似文献   

10.
Three-dimensional structure of rat acid phosphatase.   总被引:3,自引:2,他引:1       下载免费PDF全文
G Schneider  Y Lindqvist    P Vihko 《The EMBO journal》1993,12(7):2609-2615
The crystal structure of recombinant rat prostatic acid phosphatase was determined to 3 A resolution with protein crystallographic methods. The enzyme subunit is built up of two domains, an alpha/beta domain consisting of a seven-stranded mixed beta-sheet with helices on both sides of the sheet and a smaller alpha domain. Two disulfide bridges between residues 129-340 and 315-319 were found. Electron density at two of the glycosylation sites for parts of the carbohydrate moieties was observed. The dimer of acid phosphatase is formed through two-fold interactions of edge strand 3 from one subunit with strand 3 from the second subunit, thus extending the beta-sheet from seven to 14 strands. Other subunit-subunit interactions involve conserved residues from loops between helices and beta-strands. The fold of the alpha/beta domain is similar to the fold observed in phosphoglycerate mutase. The active site is at the carboxy end of the parallel strands of the alpha/beta domain. There is a strong residual electron density at the phosphate binding site which probably represents a bound chloride ion. Biochemical properties and results from site-directed mutagenesis experiments of acid phosphatase are correlated to the three-dimensional structure.  相似文献   

11.
The amino-terminal domain of the alpha subunit (alphaNTD) of Escherichia coli RNA polymerase consisting of 235 amino acid residues functions in the assembly of the alpha, beta, and beta' subunits into the core-enzyme. It has a tendency to form aggregates by itself at higher concentrations. For NMR structural analysis of alphaNTD, the solution conditions, including the use of non-denaturing detergents, were optimized by monitoring the translational diffusion coefficients using the field gradient NMR technique. Under the optimal conditions with taurodeoxycholate and with the aid of deuteration of the sample, alphaNTD gave triple-resonance spectra of good quality, which allowed the assignment of a large part of the backbone resonances. Analysis of the pattern of NOEs observed between the backbone amide and alpha-protons demonstrated that alphaNTD has three alpha-helices and two beta-sheets. Although the secondary structure elements essentially coincide with those in the crystal structure, the larger of the two beta-sheets has two additional beta-strands. The irregular NOE patterns observed for the three positions in the beta-sheets suggest the presence of beta-bulge structures. The positions of the three helices coincide with the conserved sequence regions that are responsible for the subunit assembly.  相似文献   

12.
Analysis on the three dimensional structures of (alpha/beta)(8) barrel proteins provides ample light to understand the factors that are responsible for directing and maintaining their common fold. In this work, the hydrophobically enriched clusters are identified in 92% of the considered (alpha/beta)(8) barrel proteins. The residue segments with hydrophobic clusters have high thermal stability. Further, these clusters are formed and stabilized through long-range interactions. Specifically, a network of long-range contacts connects adjacent beta-strands of the (alpha/beta)(8) barrel domain and the hydrophobic clusters. The implications of hydrophobic clusters and long-range networks in providing a feasible common mechanism for the folding of (alpha/beta)(8) barrel proteins are proposed.  相似文献   

13.
A systematic survey of seven parallel alpha/beta barrel protein domains, based on exhaustive structural comparisons, reveals that a sizable proportion of the alpha beta loops in these proteins--20 out of a total of 49--belong to either one of two loop types previously described by Thornton and co-workers. Six loops are of the alpha beta 1 type, with one residue between the alpha-helix and beta-strand, and 13 are of the alpha beta 3 type, with three residues between the helix and the strand. Protein fragments embedding the identified loops, and termed alpha beta connections since they contain parts of the flanking helix and strand, have been analyzed in detail revealing that each type of connection has a distinct set of conserved structural features. The orientation of the beta-strand relative to the helix and loop portions is different owing to a very localized difference in backbone conformation. In alpha beta 1 connections, the chain enters the beta-strand via a residue adopting an extended conformation, while in alpha beta 3 it does so via a residue in a near alpha-helical conformation. Other conserved structural features include distinct patterns of side chain orientation relative to the beta-sheet surface and of main chain H-bonds in the loop and the beta-strand moieties. Significant differences also occur in packing interactions of conserved hydrophobic residues situated in the last turn of the helix. Yet the alpha-helix surface of both types of connections adopts similar orientations relative to the barrel sheet surface. Our results suggest furthermore that conserved hydrophobic residues along the sequence of the connections, may be correlated more with specific patterns of interactions made with neighboring helices and sheet strands than with helix/strand packing within the connection itself. A number of intriguing observations are also made on the distribution of the identified alpha beta 1 and alpha beta 3 loops within the alpha/beta-barrel motifs. They often occur adjacent to each other; alpha beta 3 loops invariably involve even numbered beta-strands, while alpha beta 1 loops involve preferentially odd beta-strands; all the analyzed proteins contain at least one alpha beta 3 loop in the first half of the eightfold alpha/beta barrel. Possible origins of all these observations, and their relevance to the stability and folding of parallel alpha/beta barrel motifs are discussed.  相似文献   

14.
S C Tu  J Henkin 《Biochemistry》1983,22(2):519-523
A photoaffinity probe 1-diazo-2-oxoundecane has been synthesized and used to examine the aldehyde-binding site of the nonidentical dimeric luciferase (alpha beta) from Vibrio harveyi cells. In the dark, the probe competes against aldehyde in binding to luciferase. Irradiation of luciferase and the probe at 254 nm resulted in primarily specific labeling of both alpha and beta subunits with concomitant enzyme inactivation, but significant (congruent to 40%) nonspecific labeling of mainly the beta subunit also occurred. The addition of decanal to protect the active center reduced the rate of inactivation. When 2-mercaptoethanol was included to quench the nonspecific labeling, the amounts of probe incorporated into alpha and beta correlated stoichiometrically with the quantities of enzyme photoinactivated. On the basis of these findings, we postulate that the aldehyde binding site is at or near the subunit interface of luciferase.  相似文献   

15.
TIM proteins of alpha/beta barrel fold from alpha/beta class as given in SCOP database were taken for dipole moment analysis. In all, 32 structures were analyzed for their dipole moment contributions. Representative structures from 20 super families in the alpha/beta fold, with different enzyme functions and 12 protein domains of TIM family in TIM super family were considered. The active sites of these proteins are located on the C-terminal side of the beta-strands. The molecules of same alpha/beta fold, but differing in their functionality also showed a common electrostatic field pattern along the barrel axis and had the dipole moment along the barrel axis and towards C-terminal end of the beta-strands. However, it is observed from our calculations that the dipole moment direction is possibly a consequence of the structural fold, with distribution of charges playing a modulatory role, and does not contribute to the location of active site. We show here that apart from the commonly held view as proposed by Hol et al [Hol W G L, van Duijnen PT and Berendsen H J C (1978) Nature (London), 273, 443-446] of the role of the alpha helical dipole moment, the beta-sheets in the barrel can also have a considerable dipole moment contribution. Taken together with our dipole moment analysis on integral membrane proteins [Vasanthi G and Krishnaswamy S (2002) Indian J Biochem Biophys 39, 93-100], this suggests the need to examine the role of dipole moment in the case of especially beta sheets forming barrels.  相似文献   

16.
J M Sparks  T O Baldwin 《Biochemistry》2001,40(50):15436-15443
Bacterial luciferase catalyzes the conversion of FMNH(2), a long-chain aliphatic aldehyde, and molecular oxygen to FMN, the corresponding carboxylic acid, and H(2)O with the emission of light. The light-emitting species is an enzyme-bound excited state flavin. The enzyme is a heterodimer (alphabeta) of homologous subunits each with an (beta/alpha)(8) barrel structure. A portion of the loop in the alpha subunit that connects beta strand 7 to alpha helix 7 is disordered in the crystal structure. To test the hypothesis that this loop closes over the active site during catalysis and protects the active site from bulk solvent, a mutant was constructed in which the 29 residues that are disordered in the 2.4 A crystal structure were deleted. Deletion of this loop results in a heterodimer with a subunit equilibrium dissociation constant of 1.32 +/- 1.25 microM, whereas the wild-type heterodimer shows no measurable subunit dissociation. This mutant retains its ability to bind substrate flavin and aldehyde with wild-type affinity and can carry out the chemistry of the bioluminescence reaction with nearly wild-type efficiency. However, the bioluminescent quantum yield of the reaction is reduced nearly 2 orders of magnitude from that of the wild-type enzyme.  相似文献   

17.
The lux genes required for expression of luminescence have been cloned from a terrestrial bacterium, Xenorhabdus luminescens, and the nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits of luciferase determined. The lux gene organization was closely related to that of marine bacteria from the Vibrio genus with the luxD gene being located immediately upstream and the luxE downstream of the luciferase genes, luxAB. A high degree of homology (85% identity) was found between the amino acid sequences of the alpha subunits of X. luminescens luciferase and the luciferase from a marine bacterium, Vibrio harveyi, whereas the beta subunits of the two luciferases had only 60% identity in amino acid sequence. The similarity in the sequences of the alpha subunits of the two luciferases was also reflected in the substrate specificities and turnover rates with different fatty aldehydes supporting the proposal that the alpha subunit almost exclusively controls these properties. The luciferase from X. luminescens was shown to have a remarkably high thermal stability being stable at 45 degrees C (t 1/2 greater than 3 h) whereas V. harveyi luciferase was rapidly inactivated at this temperature (t 1/2 = 5 min). These results indicate that the X. luminescens lux system may be the bacterial bioluminescent system of choice for application in coupled luminescent assays and expression of lux genes in eukaryotic systems at higher temperatures.  相似文献   

18.
Bacterial luciferase is a heterodimeric enzyme comprising two nonidentical but homologous subunits, alpha and beta, encoded by adjacent genes, luxA and luxB. The two genes from Vibrio harveyi were separated and expressed from separate plasmids in Escherichia coli. If both plasmids were present within the same E. coli cell, the level of accumulation of active dimeric luciferase was not dramatically less than within cells containing the intact luxAB sequences. Cells carrying the individual plasmids accumulated large amounts of individual subunits, as evidenced by two-dimensional polyacrylamide gel electrophoresis. Mixing of a lysate of cells carrying the luxA gene with a lysate of cells carrying the luxB gene resulted in formation of very low levels of active heterodimeric luciferase. However, denaturation of the mixed lysates with urea followed by renaturation resulted in formation of large amounts of active luciferase. These observations demonstrate that the two subunits, alpha and beta, if allowed to fold independently in vivo, fold into structures that do not interact to form active heterodimeric luciferase. The encounter complex formed between the two subunits must be an intermediate structure on the pathway to formation of active heterodimeric luciferase.  相似文献   

19.
Energetic approach to the folding of alpha/beta barrels   总被引:2,自引:0,他引:2  
K C Chou  L Carlacci 《Proteins》1991,9(4):280-295
The folding of a polypeptide into a parallel (alpha/beta)8 barrel (which is also called a circularly permuted beta 8 alpha 8 barrel) has been investigated in terms of energy minimization. According to the arrangement of hydrogen bonds between two neighboring beta-strands of the central barrel therein, such an alpha/beta barrel structure can be folded into six different types: (1) left-tilted, left-handed crossover; (2) left-tilted, right-handed crossover; (3) nontilted, left-handed crossover; (4) nontilted, right-handed crossover; (5) right-tilted, left-handed crossover; and (6) right-tilted, right-handed crossover. Here "tilt" refers to the orientational relation of the beta-strands to the axis of the central beta-barrel, and "crossover" to the beta alpha beta folding connection feature of the parallel beta-barrel. It has been found that the right-tilted, right-handed crossover alpha/beta barrel possesses much lower energy than the other five types of alpha/beta barrels, elucidating why the observed alpha/beta barrels in proteins always assume the form of right tilt and right-handed crossover connection. As observed, the beta-strands in the energy-minimized right-tilted, right-handed crossover (alpha/beta)8-barrel are of strong right-handed twist. The value of root-mean-square fits also indicates that the central barrel contained in the lowest energy (alpha/beta)8 structure thus found coincides very well with the observed 8-stranded parallel beta-barrel in triose phosphate isomerase (TIM). Furthermore, an energetic analysis has been made demonstrating why the right-tilt, right-handed crossover barrel is the most stable structure. Our calculations and analysis support the principle that it is possible to account for the main features of frequently occurring folding patterns in proteins by means of conformational energy calculations even for very complicated structures such as (alpha/beta)8 barrels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号