首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cercopithecoid wrist joint differs from the wrist joints of hominoids in several ways. The distal ulna, the distal radius, the pisiform, the triquetrum, the hamate, and the base of the fifth metacarpal are on the one hand remarkably alike among cercopithecoid genera, and on the other remarkably distinct from homologous bones in the Hominoidea. Functionally, the triquetrum and the pisiform, in conjuction with the ulnar styloid process, check the proximal carpal row during ulnar deviation, and are possibly important in stabilizing the wrist during dorsiflexion as well. The head of the ulna almost certainly betokens a range of radioulnar supination in cercopithecoids that is substantially less than is to be found in any of the hominoid genera. The articulation between the hamate bone and the base of the fifth metacarpal allows for considerable dorsiflexion in the Cercopithecoidea; this potential was not evidenct in any of the hominoids examined. Behaviorally, the cercopithecoid wrist can most profitably be viewed as an adaptation for a quadrupedal life style involving dorsiflexion of the wrist and palmigrade/digitigrade substrate contact. The hominoid wrist joint is not adapted for such a behavioral potential.  相似文献   

2.
3.
In lorisines (Loris, Nycticebus, Perodicticus, Arctocebus), the tip of the ulna is reduced to the dimensions of a styloid process, a new and more proximal ulnar head is developed, and the pisiform is displaced distally away from its primitive contact with the ulna. In some Nycticebus, intra-articular tissues separate the ulna from the triquetrum. These traits are not seen in other quadrupedal primates, but they are characteristic of extant hominoids. Among hominoids, these features have been interpreted as adaptations to arm-swinging locomotion. Since hominoid-like features of the wrist joint are found in lorisines, but not in New World monkeys that practice arm-swinging locomotion, these features may have been evolved in both lorisines and large hominoids to enhance wrist mobility for cautious arboreal locomotion involving little or no leaping. Most of the other morphological traits characteristic of modern hominoids can be explained as adaptations to cautious quadrupedalism as well as to brachiation, and may have developed for different reasons in different lineages descended from an unspecialized cautious quadruped resembling Alouatta.  相似文献   

4.
Observations on the behavior of living hominoids show generic differences in the use and posture of the wrist joint. Both orang-utans and hylobatids usually use the wrist in suspensory behaviors. However, orang-utans emphasize markedly adducted and flexed wrist postures, while hylobatids emphasize violent forearm and wrist rotation. African apes, especially the gorilla, use the wrist more frequently than other hominoids for terrestrial quadrupedal weight-bearing. Humans use the wrist less frequently for supportive purposes than do other hominoids. These behavioral differences correspond to structural specializations in the proximal carpal joint of each of the hominoid genera. Although each of the hominoid genera has apparently modified its proximal carpal joint best to serve its characteristic behaviors, all hominoids share a unique proximal carpal joint that permits approximately 160ℴ of forearm rotation. The hylobatid proximal carpal joint is specialized in exhibiting a marked development of those structures limiting forearm rotation, but it is in most respects the least derived— that is, closest to the nonhominoid anthropoids. Chimpanzees show a proximal carpal joint that is more generalized than those of the other great apes but more derived than that of hylobatids. The human and gorilla proximal wrist joints, on the other hand, show marked modifications for weight-bearing in terrestrial behaviors. Orang-utans have the most derived proximal carpal joint, which in many respects parallels that of the slow-climbing nonhominoid primates. The comparative anatomy and structural specializations of the wrist joint support (a) an early divergence of hylobatids from the common hominoid stock, (b) a common ancestry for gorillas and humans separate from the other hominoids, and (c) a long independent evolutionary period for orang-utans since their divergence from the common hominoid stock, or one that was marked by strong selection pressures for wrist specializations. Unfortunately, the generalized condition of the chimpanzee’s wrist joint and the very derived condition of the orang-utan wrist provide uncertain evidence as to which of the two was first to diverge from the common hominoid stock. Identification of hominoid wrist specializations as reflecting real phylogenetic relationships or parallelisms depends on how well the phytogeny inferred from wrist morphology accords with those arrived at from the study of other systems.  相似文献   

5.
This study refutes the traditional idea that the glenohumeral joint of hominoids is more mobile than that of other primates, a belief that forms a basis for the two prominent theories of hominoid evolution. According to the brachiation theory, many anatomical features of the hominoid shoulder (including those of the glenohumeral joint) increase shoulder mobility and are interpreted as adaptations for brachiation. The slow climbing theory explains the same set of features as adaptations for slow climbing. The slow-climbing primates should therefore also possess these features, and their glenohumeral mobility should be the same as that of hominoids and be higher than that of other primates. This study presents three-dimensional glenohumeral mobility data, measured using a single video camera method on fresh specimens. The results show that the hominoid glenohumeral joint is actually less mobile than those of non-hominoid primates, including the habitually slow-climbing lorines, but it is characterized by a smooth excursion in the scapulocranial direction.  相似文献   

6.
The anatomy of the wrist of two species of the early Miocene hominoid Proconsul is described based on new material collected on Rusinga Island, Kenya. These fossils generally confirm previous findings that the wrist of Proconsul is monkey-like in much of its morphology. However, the structure of the ulnar side of the wrist, particularly the ulnocarpal joint, is significantly different from that of extant monkeys and suggests some functional affinities with extant hominoids. Thus the wrist of Proconsul is neither monkey-like nor ape-like in its total morphology. Instead, it shows a unique combination of features which once again point to the oversimplicity of forcing fossil forms into categories based only on extant taxa.  相似文献   

7.
目的:探讨尺骨茎突骨折的手术方法及疗效。方法:2007年1月-2010年12月,对36例尺骨茎突骨折的患者,采用Fastin骨锚治疗。术后随访2~19个月,平均8个月。采用AO组织Gartland-Werley评分进行疗效评价。结果:X线片显示术后3个月骨折均达到骨性愈合,36例患者均无腕部慢性疼痛和活动受限,Gartland-Werley评分均为优。结论:应用Fastin骨锚治疗尺骨茎突骨折是理想的治疗方法,尤其对预防尺骨远端疼痛,疗效满意。  相似文献   

8.
Anatomical differences among squirrels are usually most evident in the comparison of flying squirrels and nongliding squirrels. This is true of wrist anatomy, probably reflecting the specializations of flying squirrels for the extension of the wing tip and control of it during gliding. In the proximal row of carpals of most squirrels, the pisiform articulates only with the triquetrum, but in flying squirrels there is also a prominent articulation between the pisiform and the scapholunate, providing a more stable base for the styliform cartilage, which supports the wing tip. In the proximal wrist joint, between these carpals and the radius and ulna, differences in curvature of articular surfaces and in the location of ligaments also correlate with differences in degree and kind of movement occurring at this joint, principally reflecting the extreme dorsal flexion and radial deviation of the wrist in flying squirrels when gliding. The distal wrist joint, between the proximal and distal rows of carpals, also shows most variation among flying squirrels, principally in the articulations of the centrale with the other carpal bones, probably causing the distal row of carpal bones to function more like a single unit in some animals. There is little variation in wrist musculature, suggesting only minor evolutionary modification since the tribal radiation of squirrels, probably in the early Oligocene. Variation in the carpal bones, particularly the articulation of the pisiform with the triquetrum and the scapholunate, suggests a different suprageneric grouping of flying squirrels than previously proposed by McKenna (1962) and Mein (1970). J. Morphol. 246:85-102, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

9.
Comparative data on laterality of function in primates are useful for elucidating its evolution, including its link to asymmetry of cerebral structure. Recently the gorilla (Gorilla gorilla, Pongidae) has been nominated as the other hominoid species closest toHomo sapiens in terms of handedness. This study aims to scrutinise the 22 accounts of gorillas' hand preferences. Numerous shortcomings exist in the published literature on the topic, so that a firm conclusion is not yet possible. It is not yet clear whether gorillas are right-preferent, left-preferent, or ambi-preferent, and additional data are needed.  相似文献   

10.
A hamate and the proximal part of a first metacarpal from the type locality of the Nagri Formation in Pakistan, and attributed to Sivapithecus parvada, are described. In overall proportions, the hamate is rather robust, showing most similarity to that of Gorilla. Unlike extant hominoids it lacks a well-developed hamulus, and its triquetral facet is morphologically dissimilar to that in extant anthropoids. The morphology of the hamate indicates effective weight transmission through the ulnar side of the wrist, limited ulnar deviation and restricted extension in the triquetrohamate joint, and stability of the hamatometacarpal joints. The morphology of the partial first metacarpal is most similar to that of Pan. Previously described postcranial bones of S. parvada indicate that its locomotor behaviour included both quadrupedalism and climbing. This is consistent with the limited evidence of the first metacarpal, whereas the hamate strongly emphasizes the quadrupedal aspect of the locomotor repertoire.  相似文献   

11.
The tibiofibular junction of the South African ostrich (Struthio camelus australis) consists of the Ligg. tibiofibularia caudale, craniale proximale and distale, obliquum, and interosseum. The motion range of the fibula, respective to the tibiotarsus, averaged 35°. This junction is, however, not freely mobile as there is a resting position from which the fibula can be pronated an average of 14° (counterclockwise motion of the right fibula from the proximal view) and supinated an average of 21°. Flexion and inward rotation of the tibiotarsus causes fibular supination. This behavior is induced by the lateral meniscus (which follows the movements of the femur on the plateau of the tibiotarsus) and the femorofibular joint surfaces. As the fibular attachment of the popliteus muscle cannot migrate medially, due to its relative fixation by the femorofibular joint surfaces, fibula supination (tibiotarsus pronation), caused by contraction of the popliteus muscle leads to an inward rotation of the tibiotarsus relative to the femur. The ligaments impede excessive pro- and supination. Except for the Lig. tibiofibulare craniale distale, all ligaments also comprise fibers taut in intermediate positions—the Ligg. obliquum and interosseum each have a fiber bundle that is taut in all positions. Tibiotarsus and fibula have no joint surfaces for a common articulation. Hence, the proximal junction should not be termed “articulation” (especially with regard to the distal “syndesmosis”). © 1996 Wiley-Liss, Inc.  相似文献   

12.
A comparative study of carpal joint structure and function in six Malagasy lemuriforms was undertaken to test predicted morphoclines in carpal joint morphology between pronograde and orthograde arboreal primates. Patterns of movement at the wrist during locomotion were observed and described for the lemuriform species Lemur fulvus and Propithecus verreauxi. Lemur fulvus, which assumes a pronograde posture during locomotion, extends and pronates the wrist during the support phase of quadrupedal walking and running stride cycles. Furthermore, the forearm of this species exhibits some transverse movement across the proximal wrist joint during the support phase. In contrast, the indriid Propithecus maintains the hand and wrist in a flexed and partially supinated position during vertical clinging and suspensory postures. Habitual quadrupedal and vertical postures in Malagasy primates are in turn related to very different patterns of carpal joint morphology and articular mechanics. Those lemurs which are predominantly pronograde share a series of structural features related to stabilizing the antebrachiocarpal joint during extension and mediolateral deviation and the midcarpal joint during pronation: an intraarticular labrum is present on the inner portion of the radiocarpal ligament, the radiocarpal articular surface is quite flat dorsoventrally, the capitate-trapezoid embrasure is expanded dorsally, and development of the radial and ulnar styloids is more pronounced. The wrists of Propithecus, Avahi, and Lepilemur (vertical clingers) differ from those of quadrupedal lemuriforms in possessing a suite of morphological features related to stabilizing the wrist during antebrachiocarpal flexion and midcarpal supination: the radiocarpal articular surface is deeply curved and tilted anteriorly, the dorsal radiocarpal ligament is very broad, thick, and fibrous, the hamate's triquetral facet is directed proximodistally, and the capitate-trapezoid embrasure is dorsally constricted and expanded palmarly. These observed contrasts in carpal form and function are used to define further the morphological features related to orthograde posture in several lineages of arboreal primates. © 1996 Wiley-Liss, Inc.  相似文献   

13.
This paper reviews the non-dental morphological configuration of Miocene hominoids with special reference to the hypothesis of linear relationships between certain fossil species and living analogues. Metrical analysis of the wrist shows thatDryopithecus africanus andPliopithecus vindobonensis are unequivocally affiliated with the morphological pattern of quadrupedal monkeys. Similar analyses of the fossil hominoid elbow shows that they are more cercopithecoid-like than hominoid-like. Multivariate analysis of theP. vindobonensis shoulder in the matrix of extant Anthropoidea indicate that this putative hylobatine fossil shows no indication of even the initial development of hominoid features. The total morphological pattern of theD. africanus forelimb as assessed by principal coordinates analysis of allometrically adjusted shape variables has little resemblance toPan. Likewise, the feet and proximal femora of the Miocene fossils are unlike any living hominoid species. Even theD. africanus skull is similar to extant cercopithecoids in several features. Although ancestors cannot be expected to resemble descendants in every way, the striking dissimilarity between Miocene and extant hominoids seems to eliminate the consideration of a direct ancestor-descendant relationship between specific Miocene and modern forms.  相似文献   

14.
In an analysis of hominoid postcranial variation, 'Evol. Anthrop. 6 (1998) 87' argued that many purportedly unique features of the hominoid postcranium are actually much more variable than previously reported and in many instances overlap with both suspensory (Ateles) and non-suspensory primates. Based on these results, it was concluded that parallelism in the living ape postcranium was a plausible and even likely possibility given the Miocene hominoid postcranial record. However, this analysis did not distinguish whether within-hominoid variability or overlap with non-hominoids involved one or all ape taxa, a distinction which has potentially important effects on the interpretation of results. To address this issue, primate postcranial morphometric data from the trunk and forelimb were reanalyzed using three techniques: cladistic analysis, principle components analysis, and cluster analysis. Results reveal that these postcranial characters distinguish not only suspensory and quadrupedal primates but also discriminate hominoids and Ateles from all other taxa, great apes from lesser apes and Ateles, cercopithecines from colobines, and cercopithecoids from platyrrhines. The majority of hominoid variability and overlap with Ateles occurs with Hylobates humeral head and shoulder joint characters related to brachiation. This suggests that Hylobates' specializations may skew analyses of hominoid postcranial uniqueness and variability, and that great apes are relatively similar in their postcranium.  相似文献   

15.
俞发宏  彭燕章 《兽类学报》1992,12(2):96-104
对懒猴、猕猴、叶猴和长臂猿的肘关节形态与功能和前臂伸、屈肌肌肉电生理的研究结果表明,随着上肢运动功能的加强,肘关节的灵活性亦相应增大。猕猴各肌的肌电活动相对较弱,肘关节的结构明显不同于其它3个种,表现出对四足型运动和维持关节稳定性的适应特点。叶猴肘关节的形态结构和前臂各肌的肌电活动类似于长臂猿,表现出与臂摆荡有关的活动特点。对前臂伸、屈肌有关指数的判别分析表明,与骨骼相比,4个种的前臂各肌的形态差异明显较大。肱肌的近侧起点指数。肱桡肌的止点指数和肱三头肌内侧头的起点指数可作为4个种的鉴定特征。  相似文献   

16.
Observational data were collected on the positional behavior of habituated adult female orangutans in the rain forest of the Kutai National Park, East Kalimantan, Indonesia. Results revealed the following about locomotion during travel: movement was concentrated in the understory and lower main canopy; and brachiation (without grasping by the feet) accounted for 11% of travel distance, quadrupedalism for 12%, vertical climbing for 18%, tree-swaying for 7%, and clambering for 51%. In climbing and clambering, the animal was orthograde and employed forelimb suspension with a mixture of hindlimb suspension and support. Thus suspension by the forelimbs occurred in at least 80% of travel. Locomotion in feeding trees resembled that during travel but with more climbing and less brachiation. Feeding was distributed more evenly among canopy levels than was travel, and use of postures (by time) included sitting 50%, suspension with the body vertical 11%, and suspension by hand and foot with the body horizontal 36%. The traditional explanation of the evolution of the distinctive hominoid postcranium stresses brachiation. More recently it has been proposed that climbing, broadly defined and partly equivalent to clambering in this study, is the most significant behavior selecting for morphology. The biomechanical similarity of brachiation and the orthograde clambering of orangutans precludes the present results from resolving the issue for the evolution of Pongo. The orangutan is by far the largest mammal that travels in forest canopy, and a consideration of the ways that its positional behavior solves problems posed by habitat structure, particularly the tapering of branches and gaps between trees, indicates that suspensory capacities have been essential in permitting the evolution and maintenance of its great body size.  相似文献   

17.
The positional behaviors inferred for early Tertiary adapiform primates have been the subject of considerable debate. Adapiform wrist morphology is analyzed here within the context of extant morphoclines in carpal joint shape in order to reconstruct adapiform positional behavior. Extant vertical clingers, slow climbers, and arboreal quadrupeds differ significantly from one another in length of the m. flexor carpi ulnaris lever arm, shape of the midcarpal joint articular surface, and size and divergence of the pollical carpometacarpal articulation. These morphological differences are functionally related to differential requirements for wrist flexion, midcarpal mobility and stability, and pollical grasping, respectively. Adapis, Notharctus, and Smilodectes share with living arboreal quadrupeds a tall pisiform body, a mediolaterally flat midcarpal joint surface, and a relatively unexpanded thumb joint. Functionally, these features are related to flexing the wrist from extended positions during palmigrade, quadrupedal locomotion, increasing midcarpal joint stability during quadrupedal, weight-bearing postures, and grasping arboreal supports of predominantly horizontal and oblique orientation. The Messel adapiform (genus indet.) shares certain features of the midcarpal and pollical carpometacarpal articulations with extant vertical clingers, suggesting that this taxon used vertical substrates more frequently than other adapiforms. © 1996 Wiley-Liss, Inc.  相似文献   

18.
J M Kauer 《Acta anatomica》1975,93(4):590-605
The carpal articular disc have been studied in serial sectioned embryonal and fetal hands. It can be concluded that the articular disc is an extensive fibrous system that comes from the ulnar edge of the distal end of the radius and reaches, bordered by the deep layer of the antebrachial fascia, the base of metacarpal V. In this course, insertions take place into the ulnar aspect of the head of the ulna, into the ulnar styloid process and into the ulnar carpals. Emphasis has been laid upon the fact that the sheath of the m. extensor carpi ulnaris tendon is part of the fibrous system of the disc. The positions of the dorsal tendons seen with respect to the fascial implicate a mutual shift during pronation and supination of the hand. The relations between the so-called ligamentum subcruentum and prestyloid recess have been established, the presence of cartilaginous primordia in the developing dis has been discussed. We come to the conclusion that the evidence for drawing a parallel between phylogenetic and human embryological phenomena is still insufficient. In this connection we have stressed the modus of development of the pisotriquetral joint space.  相似文献   

19.
Studies on the wrist joint have shown two types of the carpal bone lunate. In type II lunate there is a facet on the medial side of the lunate for articulation with the proximal pole of the hamate; such a facet is absent in type I lunate. Type II lunates have different kinematics, are more prone to clinically relevant degenerative changes in the hamato-lunate joint and are an uncommon cause of ulnar-sided wrist pain. Ninety plain radiographs showing postero-anterior views of the wrist (52 right and 38 left wrists) were studied in a population of Malays from Malaysia (mean age 48 years; age range 23 to 67 years) to determine the incidence of type I and type II lunates. Our findings were compared with those in other reports in the literature. In Malays, only 24 wrists (26.7%) showed a type II lunate compared to a reported incidence of 50% or more in populations from the Western world. Such a low incidence of type II lunate has not been reported before and may represent a genetic variation in Malays. Consequently, osteoarthritis of the hamate or lunate may play a less significant role in causing ulnar-sided wrist pain in Malays. In conclusion, the prevalence of type II lunate might vary in different population groups and further studies could be necessary to confirm this observation.  相似文献   

20.
The dynamic role of the prehensile tail of atelines during locomotion is poorly understood. While some have viewed the tail of Ateles simply as a safety mechanism, others have suggested that the prehensile tail plays an active role by adjusting pendulum length or controlling lateral sway during bimanual suspensory locomotion. This study examines the bony and muscular anatomy of the prehensile tail as well as the kinematics of tail use during tail-assisted brachiation in two primates, Ateles and Lagothrix. These two platyrrhines differ in anatomy and in the frequency and kinematics of suspensory locomotion. Lagothrix is stockier, has shorter forelimbs, and spends more time traveling quadrupedally and less time using bimanual suspensory locomotion than does Ateles. In addition, previous studies showed that Ateles exhibits greater hyperextension of the tail, uses its tail to grip only on alternate handholds, and has a larger abductor caudae medialis muscle compared to Lagothrix. In order to investigate the relationship between anatomy and behavior concerning the prehensile tail, osteological data and kinematic data were collected for Ateles fusciceps and Lagothrix lagothricha. The results demonstrate that Ateles has more numerous and smaller caudal elements, particularly in the proximal tail region. In addition, transverse processes are relatively wider, and sacro-caudal articulation is more acute in Ateles compared to Lagothrix. These differences reflect the larger abductor muscle mass and greater hyperextension in Ateles. In addition, Ateles shows fewer side-to-side movements during tail-assisted brachiation than does Lagothrix. These data support the notion that the prehensile tail represents a critical dynamic element in the tail-assisted brachiation of Ateles, and may be useful in developing inferences concerning behavior in fossil primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号