首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence suggests that heavy exercise may lower the percentage of O2 bound to hemoglobin (%SaO2) by greater than or equal to 5% below resting values in some highly trained endurance athletes. We tested the hypothesis that pulmonary gas exchange limitations may restrict VO2max in highly trained athletes who exhibit exercise-induced hypoxemia. Twenty healthy male volunteers were divided into two groups according to their physical fitness status and the demonstration of exercise-induced reductions in %SaO2 less than or equal to 92%: 1) trained (T), mean VO2max = 56.5 ml.kg-1.min-1 (n = 13) and 2) highly trained (HT) with maximal exercise %SaO2 less than or equal to 92%, mean VO2max = 70.1 ml.kg-1.min-1 (n = 7). Subjects performed two incremental cycle ergometer exercise tests to determine VO2max at sea level under normoxic (21% O2) and mild hyperoxic conditions (26% O2). Mean %SaO2 during maximal exercise was significantly higher (P less than 0.05) during hyperoxia compared with normoxia in both the T group (94.1 vs. 96.1%) and the HT group (90.6 vs. 95.9%). Mean VO2max was significantly elevated (P less than 0.05) during hyperoxia compared with normoxia in the HT group (74.7 vs. 70.1 ml.kg-1.min-1). In contrast, in the T group, no mean difference (P less than 0.05) existed between treatments in VO2max (56.5 vs. 57.1 ml.kg-1.min-1). These data suggest that pulmonary gas exchange may contribute significantly to the limitation of VO2max in highly trained athletes who exhibit exercise-induced reductions in %SaO2 at sea level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In consideration of leptin effects such as reducing food intake and increasing energy consumption, many researchers have sought to examine the relation between leptin and exercise. The presence of reports arguing that zinc, can be a mediator in leptin production indicates a possible relation between zinc and leptin. The present study aims to determine plasma leptin levels in elite weightlifters and examine their relation with zinc. The study enrolled 30 healthy volunteers in the 18-27 age range. The subjects were allocated to groups in equal numbers: Group 1, Control Group: the group included subjects who did not exercise regularly. Group 2, Elite Weightlifter Group: the group included elite weight lifters who were selected to the national team in their weight classes, who exercised regularly and whose values were measured during rest in the training period. Levels of plasma leptin and zinc were determined in the blood samples collected from the subjects included in the study. Comparison of serum leptin and zinc values between groups showed that leptin and zinc levels in the control group were significantly higher than those in the weightlifters and that leptin levels decreased significantly in parallel with the low zinc levels. It can be concluded that physical activity brings about changes in leptin secretion, which in turn, can be significantly related with zinc (p < 0.01).  相似文献   

3.
AIMS: This study was designed to explore the plasma oxytocin (OT) response to exercise until exhaustion in trained male cyclists. METHODS: Twelve professional cyclists (EXP group; age: 26 +/- 2 years; VO(2)max: 4,804 +/- 549 ml) and 10 sedentary young men (CONT group; age: 23 +/- 2 years; VO(2)max: 3,146 +/- 602 ml) performed a maximal incremental exercise test on a cycle ergometer. Evaluation was made of the oxygen uptake (VO(2)) and concentrations of blood lactate and plasma OT immediately before, during and immediately after the tests, respectively. RESULTS: Significant increases (p < 0.01) related to exercise were recorded in VO(2) and lactate concentration within each group, while no such changes were observed in OT levels. OT values, on the other hand, were significantly lower (p < 0.01) in EXP than in CONT throughout the tests. CONCLUSION: It was concluded that plasma OT shows no response to graded exercise until exhaustion in professional cyclists.  相似文献   

4.
Chromium excretion of eight trained and five sedentary men was determined on rest days and after exercise to exhaustion at 90% of maximum O2 consumption (VO2max) to determine if degree of physical fitness affects urinary Cr losses. Subjects were fed a constant daily diet containing approximately 9 micrograms Cr/1,000 kcal. VO2max of the trained runners was in the good or above range based on their age and that of the sedentary subjects was average or below. While consuming the control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 microgram/day (mean +/- SE), respectively. When subjects consumed self-chosen diets, basal urinary Cr excretion of the trained subjects was also significantly lower than that of the untrained subjects. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% VO2max compared with nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 microgram/day, respectively. Urinary Cr excretion of sedentary subjects was not altered after controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to VO2max and therefore degree of physical fitness.  相似文献   

5.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

6.
Despite many reports of long-lasting elevation of metabolism after exercise, little is known regarding the effects of exercise intensity and duration on this phenomenon. This study examined the effect of a constant duration (30 min) of cycle ergometer exercise at varied intensity levels [50 and 70% of maximal O2 consumption (VO2max)] on 3-h recovery of oxygen uptake (VO2). VO2 and respiratory exchange ratios were measured by open-circuit spirometry in five trained female cyclists (age 25 +/- 1.7 yr) and five untrained females (age 27 +/- 0.8 yr). Postexercise VO2 measured at intervals for 3 h after exercise was greater (P less than 0.01) after exercise at 50% VO2max in trained (0.40 +/- 0.01 l/min) and untrained subjects (0.39 +/- 0.01 l/min) than after 70% VO2max in (0.31 +/- 0.02 l/min) and untrained subjects (0.29 +/- 0.02 l/min). The lower respiratory exchange ratio values (P less than 0.01) after 50% VO2max in trained (0.78 +/- 0.01) and untrained subjects (0.80 +/- 0.01) compared with 70% VO2max in trained (0.81 +/- 0.01) and untrained subjects (0.83 +/- 0.01) suggest that an increase in fat metabolism may be implicated in the long-term elevation of metabolism after exercise. This was supported by the greater estimated fatty acid oxidation (P less than 0.05) after 50% VO2max in trained (147 +/- 4 mg/min) and untrained subjects (133 +/- 9 mg/min) compared with 70% VO2max in trained (101 +/- 6 mg/min) and untrained subjects (85 +/- 7 mg/min).  相似文献   

7.
The effects of 4 consecutive days of 1-h exposure to 0.35 ppm ozone (O3) on maximal O2 uptake (VO2max), performance time, pulmonary function, and subjective symptom responses were studied in eight aerobically trained males. Each subject was first exposed in random order to filtered air (FA) and 0.35 ppm O3 while exercising on a bicycle ergometer for 50 min at a work load eliciting minute ventilation of approximately 60 1/min. A rapidly incremented VO2max test to volitional fatigue was completed within 10 min following each of these exposures, as well as on day 4 of the consecutive daily exposures to O3. Initial exposure to O3 induced the occurrence of subjective symptoms, as well as significant pulmonary function impairment and decrements in maximal exercise performance time (from 253 to 211 s) and VO2max (from 3.85 to 3.62 l/min). Following the fourth consecutive day of exposure to O3, pulmonary function impairment was not significantly different from initial exposure to O3, although subjective symptom severity was significantly reduced. Exercise performance time (239 s) and VO2max (3.79 l/min) on the fourth consecutive daily exposure to O3 were not significantly different from FA values. These data indicate no significant adaptation to initial O3 exposure-induced pulmonary function impairment following four consecutive daily exposures to O3, although reduced subjective symptom severity and enhanced exercise performance time on day 4 suggest an habituation effect. Our results also suggest that O3 adaptation may be a more complex phenomena than identified previously.  相似文献   

8.
The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (VO?max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min?1·kg?1 VO?) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of VO?max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher VO?max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.  相似文献   

9.
Oxygen uptake kinetics in trained athletes differing in VO2max   总被引:1,自引:0,他引:1  
Previous work has shown that when VO2 kinetics are compared for endurance trained athletes and untrained subjects, the highly trained athletes have a faster response time. However, it remains to be determined whether the more rapid adjustment of VO2 toward steady state in athletes is due to VO2max differences or training adaptation alone. One approach to this problem is to study the time course of VO2 kinetics at the onset of work in athletes who differ in VO2max but have similar training habits. Therefore, the purpose of these experiments was to compare the time course of VO2 kinetics at the onset of exercise in athletes with similar training routines but who differ in VO2max. Ten subjects (VO2max range 50-70 ml . kg-1 . min-1) performed 6-minutes of cycle ergometer exercise at approximately 50% VO2max. Ventilation and gas exchange were monitored by open circuit techniques. The data were modeled with a single component exponential function incorporating a time delay, (TD); delta VO2t = delta VO2ss (1-e-t-TD/tau), where tau is the time constant delta VO2t is the increase in VO2 at time t and delta VO2ss is the steady-rate increment above resting VO2. Kinetic analysis revealed a range of VO2 half times from 21.6 to 36.0 s across subjects with a correlation coefficient of r = -0.80 (p less than 0.05) between VO2max and VO2 half time. These data suggest that in highly trained individuals with similar training habits, those with a higher VO2max achieve a more rapid VO2 adjustment at the onset of work.  相似文献   

10.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

11.
Six trained males [mean maximal O2 uptake (VO2max) = 66 ml X kg-1 X min-1] performed 30 min of cycling (mean = 76.8% VO2max) during normoxia (21.35 +/- 0.16% O2) and hyperoxia (61.34 +/- 1.0% O2). Values for VO2, CO2 output (VCO2), minute ventilation (VE), respiratory exchange ratio (RER), venous lactate, glycerol, free fatty acids, glucose, and alanine were obtained before, during, and after the exercise bout to investigate the possibility that a substrate shift is responsible for the previously observed enhanced performance and decreased RER during exercise with hyperoxia. VO2, free fatty acids, glucose, and alanine values were not significantly different in hyperoxia compared with normoxia. VCO2, RER, VE, and glycerol and lactate levels were all lower during hyperoxia. These results are interpreted to support the possibility of a substrate shift during hyperoxia.  相似文献   

12.
To study the effects of age and training on lactate production in older trained subjects, the lactate kinetics of highly trained cyclists [HT, n = 7; 65 (SEM 1.2) years] and control subjects with low training (LT, n = 7) and of similar age were compared to those of young athletes [YA, n = 7; 26 (SEM 0.7) years], during an incremental exercise test to maximum power. The results showed that the lactacidaemia at maximal oxygen uptake (VO2max) was lower for HT than for LT (P < 0.05) and, in both cases, lower than that of YA (P < 0.001). The respective values were HT: 3.9 (SEM 0.51), LT: 5.36 (SEM 1.12), and YA: 10.3 (SEM 0.63) mmol.l-1. At submaximal powers, however, the difference in lactacidaemia was not significant between HT and YA, although the values for lactacidaemia at VO2max calculated per watt and per watt normalized by body mass were significantly lower for HT (P < 0.001) and LT (P < 0.02). These results would indicate that the decline in power with age induced a decline in lactacidaemia. Yet this loss in power was not the only causative factor; indeed, our results indicated a complementary metabolic influence. In the older subjects training decreased significantly the lactacidaemia for the same submaximal power (P < 0.01) and from 60% of VO2max onwards (P < 0.05); as for YA it postponed the increase and accumulation of lactates. The lactate increase threshold (Thla-,1) was found at 46% VO2max for LT and at 56% VO2max for HT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To document the possible influence of a single episode of maximal aerobic stress on the serum lecithin:cholesterol acyltransferase (LCAT) activity in subjects with differing histories of training, two groups of healthy male adults [controls (C), n = 18, 28.6 years, SD 5.2, 50.1 ml.kg-1.min-1 maximal O2 uptake (VO2max), SD 5.3; endurance trained athletes (T), n = 18, 31.4 years, SD 8.8, 65.0 ml.kg-1.min-1 VO2max, SD 2.8] were examined in a maximal aerobic stress test. In addition to the routine assessment of lipid status, LCAT activity was measured immediately before and after exercise. At rest nearly identical LCAT activity values were found in both groups: C 64.4 nmol.ml-1.h-1, SD 16.7 vs T 65.0 nmol.ml-1.h-1, SD 20.9. The post-exercise LCAT values induced by the maximal stress test increased significantly to (C) 95.7 nmol.ml-1.h-1, SD 23.5, +48.6%, P less than 0.001; (T) 83.5 nmol.ml-1.h-1, SD 24.3, +29.1%, P less than 0.01. Neither the pre nor the postexercise individual LCAT activity values showed any significant correlation to the corresponding data on physical performance.  相似文献   

14.
The purpose of these experiments is to test the hypothesis that exercise-induced hypoxemia at sea level in highly trained athletes might be exacerbated during acute hypoxia and therefore result in correspondingly larger decrements in maximal O2 uptake (VO2max) compared with less trained individuals. Thirteen healthy male volunteers were divided into two groups according to their level of fitness: 1) trained endurance athletes (T) (n = 7), with a VO2max range of 56-75 ml.kg-1.min-1 and 2) untrained individuals (UT) (n = 6), with a VO2max range of 33-49 ml.kg-1.min-1. Subjects performed two incremental cycle ergometry tests to determine VO2max under hypoxic conditions [14% O2-86% N2, barometric pressure (PB) = 760 Torr] and normoxic conditions (21% O2-79% N2, PB = 760 Torr). Tests were single blind, randomly administered, and separated by at least 72 h. Mean percent oxyhemoglobin saturation (%SaO2) during maximal exercise under hypoxic conditions was significantly (P less than 0.05) lower in the T group (77%) compared with the UT group (86%). Furthermore, the T group exhibited larger decrements (P less than 0.05) in VO2max (normoxic-hypoxic) compared with the UT group. Finally, a significant linear correlation (r = 0.94) existed between normoxic VO2max (ml.kg-1.min-1) and delta VO2max (normoxic-hypoxic). These data suggest that highly T endurance athletes suffer more severe gas exchange impairments during acute exposure to hypoxia than UT individuals, and this may explain a portion of the observed variance in delta VO2max among individuals during acute altitude or hypoxia exposure.  相似文献   

15.
This study compared the body water turnover in endurance athletes and age-matched sedentary men. Eight competitive endurance athletes (20.8+/-1.9 yr) and age-matched eight sedentary men (21.6+/-2.5 yr) participated in this study. Total body water and body water turnover were measured using the deuterium (D(2)O) dilution technique. Urine samples were obtained every day for 10 days after oral administration of D(2)O. The day-by-day concentrations were used to calculate the biological half-life of D(2)O and body water turnover. Maximal oxygen uptake (VO(2max)) and oxygen uptake corresponding to ventilatory threshold (VO(2VT)) as an index of aerobic capacity were determined during a graded exercise test. Both VO(2max) and VO(2VT) were higher in the exercise group than in the sedentary group (P<0.05). The biological half-life of D(2)O was significantly shorter in the exercise group than in the sedentary group (5.89+/-0.81 days vs. 7.52+/-0.77 days, P<0.05), and the percentage of the body water turnover was significantly higher in the exercise group than in the sedentary group (11.99+/-1.96% vs. 9.39+/-1.21%, P<0.05). The body water turnover was correlated with VO(2max) and VO(2VT), respectively (P<0.05). Based on these findings, this study speculates that a level of physical activity may induce a body water turnover higher in the healthy state, since the better trained subjects have a higher body water turnover.  相似文献   

16.
This study assessed the hemodynamic responses to exercise of master athletes (56 +/- 5 yr of age) who placed in the top 10% of their age groups in local 10-km competitive events, competitive young runners (26 +/- 3 yr), young runners matched in training and performance to the master athletes (25 +/- 3 yr), and healthy older sedentary subjects (58 +/- 5 yr). The maximal O2 consumption (VO2max) of the master athletes was 9 and 19% lower than that of the matched young and competitive young runners, respectively. When compared at the same relative submaximal work rates, these three groups had similar stroke volumes and arteriovenous O2 (aVO2) differences, though the master athletes had lower VO2, cardiac output, and heart rate, and higher vascular resistance. The older sedentary group had a lower stroke volume, aVO2 difference, and higher vascular resistance than the master athletes. Maximal stroke volume and estimated aVO2 difference were the same in the three groups of athletes; the lower maximal heart rate of the master athletes appears to account for their lower VO2max. The older sedentary subjects' VO2max was 47% lower than that of the master athletes; this difference was almost equally the result of a lower stroke volume and a lower a-VO2 difference. Thus these older athletes did not exhibit the decline in maximum stroke volume and aVO2 difference that occurs with aging in sedentary individuals; they also appear to have retained a greater peripheral vasodilatory response than their sedentary peers.  相似文献   

17.
Ventilatory responsiveness to hypoxia (HVR) has been reported to be different between highly trained endurance athletes and healthy sedentary controls. However, a linkage between aerobic capacity and HVR has not been a universal finding. The purpose of this study was to examine the relationship between HVR and maximal oxygen consumption (VO2 max) in healthy men with a wide range of aerobic capacities. Subjects performed a HVR test followed by an incremental cycle test to exhaustion. Participants were classified according to their maximal aerobic capacity. Those with a VO2 max of >or=60 ml x kg(-1) x min(-1) were considered highly trained (n = 13); those with a VO2 max of 50-60 ml x kg(-1) x min(-1) were considered moderately-trained (n = 18); and those with a VO2 max of <50 ml x kg(-1) x min(-1) were considered untrained (n = 24). No statistical differences were detected between the three groups for HVR (P > 0.05), and the HVR values were variable within each group (range: untrained = 0.28-1.61, moderately trained = 0.23-2.39, and highly trained = 0.08-1.73 l x min.%arterial O2 saturation(-1)). The relationship between HVR and VO2 max was not statistically significant (r = -0.1723; P > 0.05). HVR was also unrelated to maximal minute ventilation and ventilatory equivalents for O2 and CO2. We found that a spectrum of hypoxic ventilatory control is present in well-trained endurance athletes and moderately and untrained men. We interpret these observations to mean that other factors are more important in determining hypoxic ventilatory control than physical conditioning per se.  相似文献   

18.
Cardiovascular adaptations to exercise training in the elderly   总被引:1,自引:0,他引:1  
Maximal O2 uptake (VO2max) and left ventricular function decrease with age. Endurance exercise training of sufficient intensity, frequency, and duration increases VO2max in the elderly. The mechanisms underlying the increased VO2max in the elderly are enhanced O2 extraction of trained muscle during maximal exercise leading to a wider arteriovenous O2 difference, and higher cardiac output in the trained state. However, increased cardiac output during true maximal exercise has not been documented in elderly subjects. Endurance exercise training results in a lower heart rate and rate pressure product during submaximal exercise at a given intensity. However, no improvement in left ventricular function has been reported in the elderly after exercise training. Highly trained master athletes exhibit proportional increases in the left ventricular end-diastolic dimension and wall thickness suggestive of volume-overload hypertrophy compared with age-matched sedentary controls. The magnitude of left ventricular enlargement is similar to that in young athletes. The failure of exercise training to alter the age-related deterioration of left ventricular function in the elderly may reflect an insufficient training stimulus rather than the inability of the heart to adapt to training in elderly subjects.  相似文献   

19.
Adiponectin is secreted by adipocytes and has been implicated in the regulation of energy homeostasis. Vigorous training program represents a physical stress condition in which heavy changes in energy expenditure might increase adiponectin concentration in athletes. Therefore, the aim of the present study was to investigate if there are changes in fasting adiponectin concentration during preparatory period in elite male rowers. Twelve rowers (mean and SD; age: 20.8+/-3.0 years; height: 192.9+/-4.7 cm; body mass: 91.9+/-5.3 kg; body fat percentage: 11.9+/-1.4%) were tested seven times over a 24-week training season. In addition to adiponectin, leptin, insulin, growth hormone, and glucose values were evaluated. Maximal oxygen consumption (VO (2 max)) and aerobic power (Pa (max)) were determined before and after the training period. Training was mainly organized as low-intensity prolonged training. Significant increases in VO (2 max) (by 3.2+/-1.8%; from 6.2+/-0.5 to 6.4+/-0.4 l/min), VO (2 max/kg) (by 2.2+/-2.0%; from 67.9+/-3.0 to 69.4+/-3.0 ml/min/kg) and Pa (max) (by 4.6+/-6.3%; from 444.6+/-39.1 to 465.8+/-25.0 W) were observed after the 24-week period. All measured body compositional values were similar to pretraining values after the training period. Fasting adiponectin did not change during the preparatory period. Likewise, leptin, insulin, growth hormone, and glucose values were not significantly changed after the training period. Adiponectin concentration was significantly correlated (all p<0.05) with body mass (r=-0.40), body fat mass (r=-0.33), body fat free mass (r=0.38), and leptin (r=-0.31) values. In conclusion, fasting adiponectin does not change throughout the prolonged training period in elite male rowers despite substantial changes in training volume. Further studies are needed to clarify possible mechanisms by which adiponectin might influence energy homeostasis during heavy training in elite athletes.  相似文献   

20.
The effects of habitual cigarette smoking on cardiorespiratory responses to sub-maximal and maximal work were evaluated in nine adult nonsmokers and nine smokers with a mean age of 33 yr. A maximal treadmill test was followed by three tests at 45, 60 and 75% of each subject's VO(2)max. Compared to nonsmokers, the habitual smokers had a non-significantly lower VO(2)max in L/min and per lean body mass (9 and 6%, respectively), but had higher %fat (p<0.01), resulting in a significantly lower VO(2)max per kg body wt (13%, p<0.03). Maximal exercise ventilation (V(E)) was 16% lower in smokers. During sub-maximal work at equivalent exercise stress levels in the two groups, the V(E)/VO(2) ratio was higher in smokers by an average of 11% because VO(2) was lower and the respiratory exchange ratio values were significantly elevated in smokers at 75% of VO(2)max. Blood lactate concentrations in smokers were higher as workloads increased and O(2) pulse (VO(2)/HR) was significantly lower throughout, indicating reduced O(2) extraction, probably due to carbon monoxide. The resting HR was significantly higher in smokers and the HR recovery following all three submaximal exercises was significantly slower in smokers. These results show that detrimental cardiorespiratory effects of chronic cigarette smoking in apparently healthy individuals are evident at moderate exercise levels as reduced gas exchange efficiency in lungs and muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号