首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.  相似文献   

2.
3.
In a screening by multilocus sequence analysis of Pseudomonas strains isolated from diverse origins, 4 phylogenetically closely related strains (FBF58, FBF102T, FBF103, and FBF122) formed a well-defined cluster in the Pseudomonas syringae phylogenetic group. The strains were isolated from citrus orchards in northern Iran with disease symptoms in the leaves and stems and its pathogenicity against citrus plants was demonstrated. The whole genome of the type strain of the proposed new species (FBF102T = CECT 9164T = CCUG 69273T) was sequenced and characterized. Comparative genomics with the 14 known Pseudomonas species type strains of the P. syringae phylogenetic group demonstrated that this strain belonged to a new genomic species, different from the species described thus far. Genome analysis detected genes predicted to be involved in pathogenesis, such as an atypical type 3 secretion system and two type 6 secretion systems, together with effectors and virulence factors. A polyphasic taxonomic characterization demonstrated that the 4 plant pathogenic strains represented a new species, for which the name Pseudomonas caspiana sp. nov. is proposed.  相似文献   

4.
Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.  相似文献   

5.
All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.  相似文献   

6.
7.
The phytopathogenic bacterium Pseudomonas syringae produces a fluorescent pigment when it is grown in iron-deficient media. This pigment forms a very stable Fe(III) complex that was purified in this form by using a novel procedure based on ultrafiltration and column chromatography. The Fe(III) complex has a molecular weight of 1,100 and contains 1 mol of Fe(III). The pigment is composed of an amino acid moiety with three threonines, three serines, one lysine, δ-N-hydroxyornithine, and a quinoline-type fluorescent chromophore. These features and its stability constant (in the range of 1032) suggest that the fluorescent pigment of P. syringae is related to the siderophores produced by another Pseudomonas species.  相似文献   

8.
9.
The genus Pseudomonas includes pathogenic species P. syringae, which can be found in various agricultural environments and which can affect a wide variety of plants, causing significant economic losses when the environmental conditions for its proliferation are optimal. Comprehensive characterizations of phytopathogenic bacteria belonging to the genus Pseudomonas are scarce in Argentina. In this work, the tabtoxin‐producing strain Pseudomonas S5, isolated from oat, was identi?ed as a P. syringae through biochemical tests such as the LOPAT test, and genetic tests such as the analysis of the small subunit ribosomal RNA gene (16S rRNA) sequence and repetitive elements, using BOX and ERIC primers. It was also determined that this phytopathogen is potentially capable of infecting other crops of agricultural importance for our region, such as soybean. This ability to infect different hosts gives it an adaptive advantage that allows it to endure seasonal changes in the environment where it lives. Our work contributes to the physiological classification of the phytopathogen P. syringae S5 isolated from our region, as well as to the knowledge about its range of potential hosts.  相似文献   

10.
The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re‐isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml?1 on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections.  相似文献   

11.
The antibiotic 2,4-diacetylphloroglucinol (Phl) is produced by a range of naturally occurring fluorescent pseudomonads. One isolate, Pseudomonas fluorescens F113, protects pea plants from the pathogenic fungus Pythium ultimum by reducing the number of pathogenic lesions on plant roots, but with a concurrent reduction in the emergence of plants such as pea. The genes responsible for Phl production have been shown to be functionally conserved between the wild-type (wt) P. fluorescens strains F113 and Q2-87. In this study the genes from F113 were isolated using an optimized long PCR method and a 6.7-kb gene cluster inserted into the chromosome of the non-Phl-producing P. fluorescens strain SBW25 EeZY6KX. This strain is a lacZY, kmR marked derivative of the wt SBW25 which effects biological control against the plant pathogen Pythium ultimum by competitive exclusion as a result of its strong rhizosphere-colonizing ability. We describe here the integration of the Phl antifungal and competitive exclusion mechanisms into a single strain, and the impact this has on survival and plant emergence in microcosms. The insertion of the Phl biosynthetic genes from the F113 into the SBW25 chromosome gave a Phl-producing transformant (strain Pa21) able to suppress P. ultimum through antibiotic production. The growth of Pa21 was not reduced in flask culture at 20°C compared with its parent strain. When inoculated on pea seedlings, the strain containing the Phl operon behaved similarly to the SBW25 EeZY6KX parent but did not show the tendency of the wt Phl producer F113 to cause lower pea seed emergence. Pea roots inoculated with SBW25 EeZY6KX have significantly lower indigenous populations than with F113 and the control. This is indicative of this strains strong colonising presence. Pa21, the Phl-modified strain, is able to exclude the resident population from roots to the same degree as the SBW25 EeZY6KX from which it is derived. This suggests that it has maintained its competitiveness around the root systems of plants even with the introduction of the Phl locus. Thus, strain Pa21 possesses the qualities necessary to provide effective integrated biocontrol, through maintaining both its wt trait of competitive exclusion on the plant roots, while also expressing the genes from the F113 biocontrol strain for Phl production. Interestingly, however, an additional beneficial trait appears to emerge with the strain Pa21s lowered survival competence compared with SBW25 EeZY6KX in the rhizosphere soil. With fears of the spread of genetically modified organisms and persistence in the soil, this trait may be of some ecological and commercial benefit and becomes a candidate for further investigation and possible exploitation.  相似文献   

12.
3-Chlorobenzoate (3Cba)-degrading bacteria were isolated from the waters and sediments of flowthrough mesocosms dosed with various concentrations of 3Cba and inoculated with a 3Cba-degrading Alcaligenes sp., strain BR60. Bacteria capable of 3Cba degradation which were distinct from BR60 were isolated. They carried pBRC60, a plasmid introduced with Alcaligenes sp. strain BR60 that carries a transposable element (Tn5271) encoding 3Cba degradation. The isolates expressed these genes in different ways. The majority of pBRC60 recipients were motile, yellow-pigmented, gram-negative rods related to the group III pseudomonads and to BR60 by substrate utilization pattern. They were capable of complete 3Cba degradation at both millimolar and micromolar concentrations. Two isolates, Pseudomonas fluorescens PR24B(pBRC60) and Pseudomonas sp. strain PR120(pBRC60), are more distantly related to BR60 and both produced chlorocatechol when exposed to 3Cba at millimolar concentrations in the presence of yeast extract. These species showed poor growth in liquid 3Cba minimal medium but could degrade 3Cba in continuous cultures dosed with micromolar levels of the chemical. Laboratory matings confirm that pBRC60 can transfer from BR60 to species in both the beta and gamma subgroups of the proteobacteria and that 3Cba gene expression is variable between species. Selection pressures acting on pBRC60 recipients are discussed.  相似文献   

13.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

14.
The characterization of a novel Pseudomonas strain exhibiting antagonism towards many important corn fungal pathogens is presented. This strain was isolated from the caryopses of the grass Tripsacum dactyloides and was identified as Pseudomonas cepacia. The antagonistic activity is due to the production of an antifungal compound. The chromatographic properties of this partially purified compound isolated from growth medium differ from those reported previously for other pseudomonads. The suppression of the growth of economically important phytopathogens by this strain and by the partially purified compound indicates a potential biocontrol agent.  相似文献   

15.
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a ΔphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.  相似文献   

16.
Fluorescent Pseudomonas strains producing the antimicrobial secondary metabolite 2,4-diacetylphloroglucinol (Phl) play a prominent role in the biocontrol of plant diseases. A subset of Phl-producing fluorescent Pseudomonas strains, which can additionally synthesize the antimicrobial compound pyoluteorin (Plt), appears to cluster separately from other fluorescent Pseudomonas spp. based on 16S rRNA gene analysis and shares at most 98.4% 16S rRNA gene sequence identity with any other Pseudomonas species. In this study, a polyphasic approach based on molecular and phenotypic methods was used to clarify the taxonomy of representative Phl+ Plt+ strains isolated from tobacco, cotton or wheat on different continents. Phl+ Plt+ strains clustered separately from their nearest phylogenetic neighbors (i.e. species from the ‘P. syringae’, ‘P. fluorescens’ and ‘P. chlororaphis’ species complexes) based on rpoB, rpoD or gyrB phylogenies. DNA-DNA hybridization experiments clarified that Phl+ Plt+ strains formed a tight genomospecies that was distinct from P. syringae, P. fluorescens, or P. chlororaphis type strains. Within Phl+ strains, the Phl+ Plt+ strains were differentiated from other biocontrol fluorescent Pseudomonas strains that produced Phl but not Plt, based on phenotypic and molecular data. Discriminative phenotypic characters were also identified by numerical taxonomic analysis and siderotyping. Altogether, this polyphasic approach supported the conclusion that Phl+ Plt+ fluorescent Pseudomonas strains belonged to a novel species for which the name Pseudomonas protegens is proposed, with CHA0T (=CFBP 6595T, =DSM 19095T) as the type strain.  相似文献   

17.
18.
Mutations in the global regulatory genes gacS and gacA render Pseudomonas syringae pv. syringae strain B728a completely nonpathogenic in foliar infiltration assays on bean plants. It had been previously demonstrated that gac genes regulate alginate production in Pseudomonas species, while other published work indicated that alginate is involved in the pathogenic interaction of P. syringae on bean plants. Together, these results suggested that the effects of gacS and gacA mutations on virulence in B728a might stem directly from a role in regulating alginate. In this report, we confirm a role for gac genes in both algD expression and alginate production in B728a. However, B728a mutants completely devoid of detectable alginate were as virulent as the wild-type strain in our assay. Thus, factors other than, or in addition to, a deficiency of alginate must be involved in the lack of pathogenicity observed with gacS and gacA mutants.  相似文献   

19.
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.  相似文献   

20.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号