首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

2.
Treatment of rats with diamide (100 mg/kg i.p.) altered the thiol components of the blood to a very different extent than in tissues (liver, kidney, lung, spleen, heart and testis). A total consumption (10 min) and regeneration (120 min) of blood glutathione (GSH), matched by a parallel increase and decrease in glutathione-protein mixed disulfides (GS-SP) was observed. In contrast, no modification of non-protein SH groups (NPSH) and protein SH groups (PSH), GS-SP and malondialdehyde (MDA) was observed in liver, kidney, lung, testis spleen and heart within same time range. In particular, only glutathione disulfide (GSSG) levels and some activities of antioxidant enzymes were modified to a small extent and in an opposite direction in some organs. For example, GSSG, and glucose-6-phosphate dehydrogenase (G-6-PDH) and catalase (CAT) activities appeared up-regulated in one tissue and down-regulated in another. The least modified organ was the liver, whereas lung and spleen were the most affected (lung, GSSG, significantly increased whereas G-6-PDH, glutaredoxin (GRX), GPX, superoxide dimutase (SOD) levels were significantly lowered; spleen, GSSG and the activity of glutathione reductase (GR), G-6-PDH and glutathione transferase (GST) were significantly decreased). The different responses of erythrocytes and organs to diamide were explained by the high affinity of hemoglobin and by the relatively high potential of thiol regeneration in organs. The rapid reversibility of the process of protein S-thiolation in blood and the small effects in organs leads us to propose the existence of an inter-organ cooperation in the rat that regulates protein S-thiolation in blood. Plasma thiols may well play a role in this process.  相似文献   

3.
The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.  相似文献   

4.
The antirheumatic drug aurothioglucose is an inhibitor of the selenoenzyme GSH peroxidase. During chrysotherapy, the decreased levels of erythrocyte GSH and serum sulfhydryls of rheumatoid arthritis patients are normalized concomitant with clinical efficacy. This investigation examined the in vivo and in vitro effect of gold(I) as aurothioglucose on enzymes related to the GSH redox cycle or metabolism. The enzymes measured were GSH peroxidase, GSSG reductase, gamma-glutamyl transpeptidase, gamma-glutamylcysteine synthetase, GSH S-transferase, GSH thiotransferase, glucose-6-phosphate dehydrogenase, superoxide dismutase and catalase. Rats were injected with 30 mumol aurothioglucose/kg body wt. daily for 7 days by intramuscular injection. GSH levels in aurothioglucose-treated rats were 68% higher in erythrocytes (P less than 0.005) and 45% higher in kidney (P less than 0.001) than in control rats. Treatment with aurothioglucose did not elevate plasma or liver GSH. The enzyme activities that were changed by aurothioglucose treatment were GSH peroxidase in kidney (41% decreased, P = 0.005) and liver (13% decreased, P less than 0.05), gamma-glutamyl transpeptidase in kidney (15% decreased, P less than 0.05), and catalase in kidney (58% decreased, P less than 0.001). Kidney glucose-6-phosphate dehydrogenase activity was increased 50% (P less than 0.005) and GSH S-transferase was increased 72% (P less than 0.001). In vitro the only liver enzymes inhibited more than 50% by concentrations of less than 50 microM aurothioglucose were GSH peroxidase (50% inhibited by 25 microM aurothioglucose) and GSH thiotransferase (50% inhibited by 5 microM aurothioglucose). Studies of in vitro enzyme inhibition by aurothioglucose could not be used to predict decreased enzyme activities in vivo. Although decreased activities of two major enzymes that utilize GSH, GSH peroxidase and gamma-glutamyl transpeptidase, coincided with elevated GSH in kidneys of aurothioglucose-treated rats, a direct cause and effect relationship remains speculative.  相似文献   

5.
Reactive oxygen species are important mediators of cellular damage during endotoxic shock. In order to investigate the hepatic response to the oxidative stress induced by endotoxin, hepatic and plasma glutathione (total, GSH and GSSG), GSSG/GSH ratio as well as Mn-superoxide dismutase and catalase activities were determined during the acute and recovery phases of reversible endotoxic shock in the rat. A significant increase in liver and plasma total glutathione content was observed 5 h after endotoxin treatment (acute phase), followed by a diminution of these parameters below control values at 48 h (recovery phase). The significant increases of GSSG levels and GSSG/GSH ratio are indicative of oxidative stress occurring during the acute phase. Liver Mn-SOD activity showed a similar time dependency as the GSSG/GSH ratio; however, a marked decrease in the liver catalase activity was observed during the process. These results indicate the participation of liver glutathione in the response to endotoxin and the possible use of plasma glutathione levels and GSSG/GSH ratio as indicators of the acute phase during the endotoxic process. (Mol Cell Biochem 159: 115-121, 1996)  相似文献   

6.
Ascorbic acid treatment in arsenic trioxide treated rats increased arsenic excretion, inhibited lipid peroxidation, improved GSH status, regulated GSSG turnover and also restored glutathione-S-transferases activity in liver and kidney. Suitable mechanisms leading to ascorbic acid protection have been discussed. Upregulation of GSH dependent enzymes was found to be necessary for a protective effect. Protection is finally attributed to higher GSH levels observed in the liver and kidney of ascorbic acid and inorganic arsenic treated rats. It is also concluded that ascorbic acid protection is influenced by gender dependent factors. Arsenic poisoning is a global problem now. Gender differences need to be considered while applying therapeutic measures.  相似文献   

7.
The effect of x-rays on GSH and GSSG levels in blood was studied in mice and humans. An HPLC method that we recently developed was applied to accurately determine GSSG levels in blood. The glutathione redox status (GSH/GSSG) decreases after irradiation. This effect is mainly due to an increase in GSSG levels. Mice received single fraction radiotherapy, at total doses of 1.0 to 7.0 Gy. Changes in GSSG in mouse blood can be detected 10 min after irradiation and last for 6 h within a range of 2.0–7.0 Gy. The highest levels of GSSG (20.1 ± 2.9 ), a 4.7-fold increase as compared with controls) in mouse blood are found 2 h after radiation exposure (5 Gy). Breast and lung cancer patients received fractionated radiotherapy at total doses of 50.0 or 60.0 Gy, respectively. GSH/GSSG also decreases in humans in a dose–response fashion. Two reasons may explain the radiation-induced increase in blood GSSG: (a) the reaction of GSH with radiation-induced free radicals resulting in the formation of thyl radicals that react to produce GSSG; and (b) an increase of GSSG release from different organs (e.g., the liver) into the blood. Our results indicate that the glutathione redox ratio in blood can be used as an index of radiation-induced oxidative stress. © 1997 Elsevier Science Inc.  相似文献   

8.
The sex-specific divergence of antioxidant pathways in fetal organs of opposite-sex twin is unknown and remains urgently in need of investigation. Such study faces many challenges, mainly the ethical impossibility of obtaining human fetal organs. Opposite-sex sheep twins represent a unique model for studying a sex dimorphism for antioxidant systems. The activity of total superoxide dismutase (SOD), SOD1, SOD2, glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT), the content of total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG) were measured in brain, lung, liver, kidney, and skeletal muscles of female and male fetuses collected from sheep twin pregnancies at day 65 of gestation. Lipid peroxidation was assessed by measuring melondialdehyde (MDA) tissue content. Male brain has greater total SOD and SOD1 activities than female brain. Female liver has greater SOD2 activity than male liver. Male liver has greater GR activity than female liver. Male liver has higher total GSH and GSSG content than female liver. Male skeletal muscles have higher total GSH, GSH, and GSSG content than female skeletal muscles. Female brain and liver have higher MDA content than male brain and liver. This is the first report of a sex dimorphism for fetal organ antioxidative pathways. Brain, liver, and skeletal muscles of male and female fetuses display distinct antioxidant pathways. Such sexually dimorphic responses to early life oxidative stress might be involved in the sex-related difference in fetal development that may have a long-term effect on offspring. Our study urges researchers to take into consideration the importance of sex as a biologic variable in their investigations.  相似文献   

9.
The present study showed that exposure of chlorpyrifos, O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate (CPF), a widely used pesticide in rats caused significant inhibition of acetylcholinesterase (AChE) activity in different tissues viz., liver, kidney and spleen. CPF exposure also generated oxidative stress in the body, as evidenced by increase in thiobarbituric acid reactive substances (TBARS), decrease in the levels of superoxide scavenging enzymes viz., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in liver, kidney and spleen at all doses. Malondialdehyde levels were increased by 14%, 31% and 76% in liver, 11%, 31% and 64% in kidney and 32%, 75% and 99.9% in spleen when 50 mg, 100 mg and 200 mg/kg body wt. CPF was administered for three days. SOD and CAT activities were decreased in liver, kidney and spleen, while GPx activity showed slight increase in kidney at 50 mg and 100 mg dose, and decreased on further increase in dose of CPF. Liver and spleen showed dose-dependent decrease in GPx activity. The levels of reduced glutathione (GSH) was decreased, while oxidized glutathione (GSSG) was increased, thus a marked fall in GSH/GSSG ratio was observed in all tissues. A maximum decrease of 83% was observed in liver, followed by kidney and spleen, which showed 78% and 57% decrease, respectively in group given 200 mg/kg CPF. The levels of glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) were also decreased in liver and kidney, while spleen showed increase at lower doses, but decrease at high dose of CPF. The data provide evidence for induction of oxidative stress on CPF exposure.  相似文献   

10.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

11.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

12.
Reduced and oxidized glutathione (GSH and GSSG), protein-bound glutathione, lipid peroxidation and antioxidant enzyme activities were determined in the erythrocyte lysates and membranes of type I and II alcoholics in order to clarify the effect of age-of-onset and the duration of the alcohol consumption on erythrocyte oxidant and antioxidant status. The osmotic fragility and susceptibility of the erythrocytes to haemolysis were also determined. Erythrocyte lipid peroxidation was significantly increased but, GSH and protein-bound GSH, GSH/GSSG ratio and antioxidant enzyme activities were markedly decreased in the erythrocytes of the alcoholic subgroups. Erythrocyte count and haemoglobin content in the blood of alcoholics were found to be decreased in accordance with the finding that erythrocytes were more fragile and less resistant to haemolysis particularly in type II alcoholics. The present study showed that ethanol-induced oxidative stress in erythrocytes can lead to haemolysis and membrane-specific injuries in erythrocytes of the alcoholic subtypes.  相似文献   

13.
Rodrigo R  Rivera G  Orellana M  Araya J  Bosco C 《Life sciences》2002,71(24):2881-2895
This study evaluated the antioxidant defense system of the rat kidney following chronic exposure to red wine rich in flavonols. Both ethanol and antioxidant non-alcoholic wine components, mainly polyphenols, could contribute to the antioxidant status of kidney. Adult rats were given separately, water, ethanol (12.5%), red wine or alcohol-free red wine. After ten weeks of treatment, blood samples were obtained to determine plasma antioxidant capacity (FRAP, ferric reducing ability of plasma), uric acid and ethanol levels. Kidney tissues (cortex and papilla) were separated to perform measurements of reduced glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (malondialdehyde, MDA) and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activity of (Na + K)-ATPase, a membrane-bound enzyme, was also assessed. Red wine in plasma, elevated the FRAP without changing the concentration of uric acid; in kidney, it diminished the MDA production and elevated the GSH/GSSG ratio and the activity of CAT and GSH-Px. The activity of SOD did not change. Despite the finding that renal (Na + K)-ATPase activity was upregulated by ethanol, it was not altered by either red wine or alcohol-free red wine. The effects on the antioxidant enzymes could be attributed to ethanol, but the increase in the FRAP and GSH/GSSG ratio is attributed to the non-alcoholic components of red wine. These data suggest that there is an enhancement of the antioxidant defense potential in kidney and plasma, after chronic red wine consumption. Both ethanol and the non-alcoholic antioxidant constituents of red wine could be responsible for these effects.  相似文献   

14.
A rapid, sensitive, and selective method for the quantitation of both oxidized (GSSG) and reduced (GSH) glutathione in biological materials is described. Oxidized and reduced glutathione are resolved by anion-exchange high-performance liquid chromatography and detected with an in-line, recycling postcolumn reaction. The recycling reaction specifically amplifies the response to oxidized and reduced glutathione 20-100 times over that obtained with a stoichiometric reaction, permitting the detection of 2 pmol glutathione. Oxidized and reduced glutathione levels were measured in rat liver and in dog heart mitochondria. Special precautions are necessary to avoid artifacts which lead to either underestimation or overestimation of GSSG levels. GSH/GSSG ratios of approximately 100-300 were observed in samples prepared from rapidly frozen rat liver. Somewhat higher GSH/GSSG ratios were observed in isolated dog heart mitochondria.  相似文献   

15.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

16.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

17.
This study was designed to determine the effect of diphenyl diselenide and ebselen, synthetic organoselenium compounds with antioxidant properties, in diabetic rats. Diabetes was induced by the administration of streptozotocin (STZ) (45mg/kg, intravenous). In experimental trials, diphenyl diselenide, but not ebselen, caused a significant reduction in blood glucose levels of STZ-treated rats. This effect of diphenyl diselenide was accompanied by a reduction in the levels of glycated proteins. Diphenyl diselenide ameliorate superoxide dismutase activity (liver and erythrocytes) and Vitamin C levels (liver, kidney and blood), which were decreased in STZ-treated rats. In normal rats, diphenyl diselenide caused per se an increase in hepatic, renal and blood GSH levels. Similarly, treatment with diphenyl diselenide restored hepatic and renal GSH levels in STZ-treated rats. TBARS and protein carbonyl levels were not modified by STZ and/or diphenyl diselenide and ebselen treatments. Our findings suggest that diphenyl diselenide can be considered an anti-diabetogenic agent by exhibiting anti-hyperglycemic and antioxidant properties.  相似文献   

18.
Many clinical studies reported that diabetic patients had lower glutathione contents in erythrocytes or plasma. Recently, selenium, an essential trace element with well-known antioxidant characteristics, has been found to have insulin-mimetic properties. But seldom information is available about the influence of selenium on glutathione changes induced by diabetes mellitus in animals. Therefore, this study was designed to compare the impacts of selenite treatment on glutathione (GSH) levels of blood and tissues such as brain, kidney, liver, spleen and testis in mice. Four groups were used in this study: a control group, a diabetic group, a selenite-treated normal group and a selenite-treated diabetic group. Selenite was administered to the mice for 4 weeks with an oral dose of 2 mg kg(-1) day(-1) by gavage. The blood glucose level, and GSH level in blood and tissues were determined. The results show that the selenite-treated diabetic group had significantly lower blood glucose levels than the diabetic group. Moreover, alloxan-induced diabetes significantly decreased GSH levels in blood, kidney, liver and testis compared to the controls. Selenite treatment of the diabetic mice only improved the GSH levels in liver and brain. On the other hand, selenite administered to the normal mice reduced GSH levels in the liver compared to the controls. In conclusion, this study suggests that selenite treatment of diabetic mice with an effective dose would be beneficial for the antioxidant system of liver and brain although it exerts a toxic effect on the liver of normal mice.  相似文献   

19.
This study was aimed to analyse and compare the bioenergetics and oxidative status of mitochondria isolated from liver, heart and brain of ovariectomized rat females treated with 17β-estradiol (E2) and/or tamoxifen (TAM). E2 and/or TAM did not alter significantly the respiratory chain of the three types of mitochondria. However, TAM significantly decreased the phosphorylation efficiency of liver mitochondria while E2 significantly decreased the phosphorylation efficiency of heart mitochondria. E2 also significantly decreased the capacity of heart and liver mitochondria to accumulate Ca(2+) this effect being attenuated in liver mitochondria isolated from E2+TAM-treated rat females. TAM treatment increased the ratio of glutathione to glutathione disulfide (GSH/GSSG) of liver mitochondria. Brain mitochondria from TAM- and E2+TAM-treated females showed a significantly lower GSH/GSSG ratio. However, heart mitochondria from TAM- and E2+TAM-treated females presented a significant decrease in GSSG and an increase in GSH/GSSG ratio. Thiobarbituric acid reactive substances levels were significantly decreased in liver mitochondria isolated from E2+TAM-treated females. Finally, E2 and/or TAM treatment significantly decreased the levels of hydrogen peroxide produced by brain mitochondria energized with glutamate/malate. These results indicate that E2 and/or TAM have tissue-specific effects suggesting that TAM and hormonal replacement therapies may have some side effects that should be carefully considered.  相似文献   

20.
Metabolism of exogenous glutathione was investigated in suspensions of freshly isolated rat small-intestinal mucosal cells. The cells catalyzed the oxidation of reduced glutathione (GSH) to glutathione disulfide (GSSG). Neither serine . borate nor methionine significantly influenced this reaction. Formed GSSG was further metabolized as indicated by its disappearance from the medium. Degradation of GSSG was stimulated by methionine and inhibited by serine . borate. Separation and identification of GSSG metabolites were achieved by high performance liquid chromatography. The results indicate that the preferred route for GSSG metabolism to the constituent amino acids in small intestine, is by hydrolytic removal of the two gamma-glutamyl groups of GSSG to yield cystinyl-bisglycine which is subsequently hydrolyzed to cystine. gamma-Glutamyltransferase activity was compared in isolated intestinal, kidney and liver cells using gamma-glutamyl-p-nitrocarboxyanilide as substrate. Kidney cells were approximately 5-fold and 150-fold more active than intestinal and liver cells, respectively. Serine . borate markedly inhibited, and glycyl-glycine stimulated, hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide in all cell types confirming the involvement of gamma-glutamyltransferase in the reaction. The hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide was inhibited to approximately the same extent by either GSH or GSSG suggesting that both compounds interact at the donor site of gamma-glutamyltransferase. Comparison of the rates of glutathione metabolism by isolated intestinal and kidney cells suggests that the intestinal contribution to the degradation of extracellular glutathione may be physiologically more important than has previously been assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号