首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
The RanGTPase activating protein RanGAP1 has essential functions in both nucleocytoplasmic transport and mitosis. In interphase, a significant fraction of vertebrate SUMO1-modified RanGAP1 forms a stable complex with the nucleoporin RanBP2/Nup358 at nuclear pore complexes. RanBP2 not only acts in the RanGTPase cycle but also is a SUMO1 E3 ligase. Here, we show that RanGAP1 is phosphorylated on residues T409, S428, and S442. Phosphorylation occurs before nuclear envelope breakdown and is maintained throughout mitosis. Nocodazole arrest leads to quantitative phosphorylation. The M-phase kinase cyclin B/Cdk1 phosphorylates RanGAP1 efficiently in vitro, and T409 phosphorylation correlates with nuclear accumulation of cyclin B1 in vivo. We find that phosphorylated RanGAP1 remains associated with RanBP2/Nup358 and the SUMO E2-conjugating enzyme Ubc9 in mitosis, hence mitotic phosphorylation may have functional consequences for the RanGTPase cycle and/or for RanBP2-dependent sumoylation.  相似文献   

2.
To identify the binding proteins that regulate the function of procaspase-2, we screened for proteins using the yeast two-hybrid method and isolated human Ubc9 and SUMO-1 as the candidates. Ubc9 and SUMO-1 interacted with the caspase recruitment domain of procaspase-2 in its N-terminal. We elucidated the covalent modification of procaspase-2 by SUMO-1 in mammalian cells by immunoprecipitation followed by Western blot analysis. Procaspase-2 and SUMO-1 were co-localized by dot-like structures in the nucleus that are related to promyelocytic leukemia bodies. Interestingly, a conjugation-deficient mutant (K60R) procaspase-2 resulted in a delay of its enzyme maturation (appearance of p12 subunit) compared to that of wild-type. Thus, the modification with SUMO-1 may play a critical role in the nuclear localization and the activation (maturation) of procaspase-2.  相似文献   

3.
NDC1 is a transmembrane nucleoporin that is required for NPC assembly and nucleocytoplasmic transport. We show here that NDC1 directly interacts with the nucleoporin ALADIN, mutations of which are responsible for triple-A syndrome, and that this interaction is required for targeting of ALADIN to nuclear pore complexes (NPCs). Furthermore, we show that NDC1 is required for selective nuclear import. Our findings suggest that NDC1-mediated localization of ALADIN to NPCs is essential for selective nuclear protein import, and that abrogation of the interaction between ALADIN and NDC1 may be important for the development of triple-A syndrome.  相似文献   

4.
5.
Protein modification by the ubiquitin-like SUMO protein contributes to many cellular regulatory mechanisms. In Saccharomyces cerevisiae, both sumoylating and desumoylating activities are essential for viability. Of its two known desumoylating enzymes, Ubl-specific protease (Ulp)1 and Ulp2/Smt4, Ulp1 is specifically required for cell cycle progression. A approximately 200-residue segment, the Ulp domain (UD), is conserved among Ulps and includes a core cysteine protease domain that is even more widespread. Here we demonstrate that the Ulp1 UD by itself can support wild-type growth rates and in vitro can cleave SUMO from substrates. However, in cells expressing only the UD of Ulp1, many SUMO conjugates accumulate to high levels, indicating that the nonessential Ulp1 NH2-terminal domain is important for activity against a substantial fraction of sumoylated targets. The NH2-terminal domain also includes sequences necessary and sufficient to concentrate Ulp1 at nuclear envelope sites. Remarkably, NH2-terminally deleted Ulp1 variants are able, unlike full-length Ulp1, to suppress defects of cells lacking the divergent Ulp2 isopeptidase. Thus, the NH2-terminal regulatory domain of Ulp1 restricts Ulp1 activity toward certain sumoylated proteins while enabling the cleavage of others. These data define key functional elements of Ulp1 and strongly suggest that subcellular localization is a physiologically significant constraint on SUMO isopeptidase specificity.  相似文献   

6.
Polypyrimidine tract-binding protein 1 (PTBP1) and its brainspecific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1. [BMB Reports 2014; 47(4): 233-238]  相似文献   

7.
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.  相似文献   

8.
During cell division, Nuclear Pore Complexes (NPCs) are broken down into protein subcomplexes that are the basis for reassembly in daughter cells. This is the driving force for the establishment of an in vitro reconstitution system to study aspects of NPC reassembly. In this study, nuclear envelope (NE) was isolated from HeLa cells. NE was treated with increasing concentrations of heparin to extract nucleoporins (Nups) for the production of “ghost pores” which are pores severely deficient in Nups, while still containing Pore Membrane proteins (POM) needed to anchor the NPC. Ghost pores have been subjected to incubation with previously stripped Nups and some re-binding has been shown to occur by western blot analysis. This in vitro assay provides a powerful tool to investigate the protein–protein interactions of NPC reassembly from a human cell line. Through a better understanding of the process of NPC reassembly, we can continue to piece together the puzzle of this macromolecular structure. It is most advantageous to establish a straightforward reconstitution procedure at the mammalian level.  相似文献   

9.
Gle2p is implicated in nuclear export of poly(A)+ RNA and nuclear pore complex (NPC) structure and distribution in Saccharomyces cerevisiae. Gle2p is anchored at the nuclear envelope (NE) via a short Gle2p-binding motif within Nup116p called GLEBS. The molecular mechanism by which Gle2p and the Gle2p-Nup116p interaction function in mRNA export is unknown. Here we show that RAE1, the mammalian homologue of Gle2p, binds to a GLEBS-like NUP98 motif at the NPC through multiple domains that include WD-repeats and a COOH-terminal non-WD-repeat extension. This interaction is direct, as evidenced by in vitro binding studies and chemical cross-linking. Microinjection experiments performed in Xenopus laevis oocytes demonstrate that RAE1 shuttles between the nucleus and the cytoplasm and is exported from the nucleus in a temperature-dependent and RanGTP-independent manner. Docking of RAE1 to the NE is highly dependent on new mRNA synthesis. Overexpression of the GLEBS-like motif also inhibits NE binding of RAE1 and induces nuclear accumulation of poly(A)+ RNA. Both effects are abrogated either by the introduction of point mutations in the GLEBS-like motif or by overexpression of RAE1, indicating a direct role for RAE1 and the NUP98-RAE1 interaction in mRNA export. Together, our data suggest that RAE1 is a shuttling transport factor that directly contributes to nuclear export of mRNAs through its ability to anchor to a specific NUP98 motif at the NPC.  相似文献   

10.
The evidence that nuclear proteins can be degraded by cytosolic proteasomes has received considerable experimental support. However, the presence of proteasome subunits in the nucleus also suggests that protein degradation could occur within this organelle. We determined that Sts1 can target proteasomes to the nucleus and facilitate the degradation of a nuclear protein. Specific sts1 mutants showed reduced nuclear proteasomes at the nonpermissive temperature. In contrast, high expression of Sts1 increased the levels of nuclear proteasomes. Sts1 targets proteasomes to the nucleus by interacting with Srp1, a nuclear import factor that binds nuclear localization signals. Deletion of the NLS in Sts1 prevented its interaction with Srp1 and caused proteasome mislocalization. In agreement with this observation, a mutation in Srp1 that weakened its interaction with Sts1 also reduced nuclear targeting of proteasomes. We reported that Sts1 could suppress growth and proteolytic defects of rad23Δ rpn10Δ. We show here that Sts1 suppresses a previously undetected proteasome localization defect in this mutant. Taken together, these findings explain the suppression of rad23Δ rpn10Δ by Sts1 and suggest that the degradation of nuclear substrates requires efficient proteasome localization.  相似文献   

11.
《Molecular cell》2022,82(20):3856-3871.e6
  1. Download : Download high-res image (235KB)
  2. Download : Download full-size image
  相似文献   

12.
Over the past years, modification by covalent attachment of SUMO (small ubiquitin-like modifier) has been demonstrated for of a number of cellular and viral proteins. While increasing evidence suggests a role for SUMO modification in the regulation of protein-protein interactions and/or subcellular localization, most SUMO targets are still at large. In this report we show that Topors, a Topoisomerase I and p53 interacting protein of hitherto unknown function, presents a novel cellular target for SUMO-1 modification. In a yeast two-hybrid system, Topors interacted with both SUMO-1 and the SUMO-1 conjugating enzyme UBC9. Multiple SUMO-1 modified forms of Topors could be detected after cotransfection of exogenous SUMO-1 and Topors induced the colocalization of a YFP tagged SUMO-1 protein in a speckled pattern in the nucleus. A subset of these Topors' nuclear speckles were closely associated with the PML nuclear bodies (POD, ND10). A central domain comprising Topors residues 437 to 574 was sufficient for both sumolation and localization to nuclear speckles. One SUMO-1 acceptor site at lysine residue 560 could be identified within this region. However, sumolation-deficient Topors mutants showed that sumolation obviously is not required for localization to nuclear speckles.  相似文献   

13.
14.
The apoptosis of glomerular mesangial cells (GMC) in rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis, is accompanied by sublytic C5b-9 deposition, but the mechanism of sublytic C5b-9-mediated GMC apoptosis has not been elucidated. In the present study, the gene expression profiles both in the GMC stimulated by sublytic C5b-9 and the rat renal tissue of Thy-1N were detected using microarrays. Among the co-up-regulated genes, the up-regulation of interferon regulatory factor-1 (IRF-1) was further confirmed. Increased caspase 8 and caspase 3 expression and caspase 8 promoter activity in the GMC were also identified. Meanwhile, overexpression or knockdown of IRF-1 not only enhanced or inhibited GMC apoptosis and caspase 8 and 3 induction but also increased or decreased caspase 8 promoter activity, respectively. The element of IRF-1 binding to the caspase 8 promoter was first revealed. Furthermore, silencing IRF-1 or repressing the activation of caspases 8 and 3 significantly reduced GMC apoptosis, including other pathologic changes of Thy-1N. These novel findings indicate that GMC apoptosis of Thy-1N is associated with the IRF-1-activated caspase 8 pathway.  相似文献   

15.
《Molecular cell》2022,82(24):4611-4626.e7
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

16.
Autophagy is an intracellular degradation process involving many Atg proteins, which are recruited hierarchically to regulate this process. Rab/Ypt GTPases and their activators, guanine nucleotide exchange factors (GEFs), which are critical for regulating vesicle trafficking, are also involved in autophagy. Previously, we reported that yeast Vps21 and its GEF Vps9 are required for autophagy. Later, a third yeast VPS9‐domain‐containing protein, V AR P‐l ike 1 (Vrl1), which was identified as a mutant in major laboratory strains, had partially overlapping functions with Vps9 in trafficking. In this study, we showed that Vrl1 performed roles in autophagy, and its VPS9‐domain was crucial for its role in autophagy. We found that localization of Vrl1 differed from the other two VPS9‐domain‐containing proteins, Vps9 and Muk1, and only Vrl1 changed from multipoint to diffusion after starvation. Like Vps9, Vrl1 suppressed autophagic defects caused by the VPS9 deletion. We further showed that these VPS9‐domain‐containing proteins, Vps9, Muk1, and Vrl1, all co‐localized with Atg8 on autophagosomes in cells blocked in any late step of starvation‐induced autophagy, with Vrl1 most often co‐localizing with Atg8. A small portion (<25%) of these VPS9‐domain‐containing proteins were degraded through autophagy. However, a large portion (>60%) of Vrl1 decreased independently of autophagy. We propose that Vrl1 may regulate autophagy in a similar way as Vps9, and the level of Vrl1 partly decreases through both autophagy‐dependent and ‐independent routes.  相似文献   

17.

Background

Placenta growth factor (PlGF), a dimeric glycoprotein with 53% homology to VEGF, binds to VEGF receptor-1 (Flt-1), but not to VEGF receptor-2 (Flk-1), and may function by modulating VEGF activity. We previously have showed that PlGF displays prognostic value in colorectal cancer (CRC) but the mechanism remains elucidated.

Results

Overexpression of PlGF increased the invasive/migration ability and decreased apoptosis in CRC cells showing Flt-1 expression. Increased migration was associated with increasing MMP9 via p38 MAPK activation. Tumors grew faster, larger; with higher vascularity from PlGF over-expression cells in xenograft assay. In two independent human CRC tissue cohorts, PlGF, MMP9, and Flt-1 expressions were higher in the advanced than the localized disease group. PlGF expression correlated with MMP9, and Flt-1 expression. CRC patients with high PlGF and high Flt-1 expression in tissue had poor prognosis.

Conclusion

PlGF/Flt-1 signaling plays an important role in CRC progression, blocking PlGF/Flt-1 signaling maybe an alternative therapy for CRC.  相似文献   

18.
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号