首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.  相似文献   

2.
Sulfate assimilation provides reduced sulfur for synthesis of the amino acids cysteine and methionine and for a range of other metabolites. Sulfate has to be activated prior to reduction by adenylation to adenosine 5'-phosphosulfate (APS). In plants, algae, and many bacteria, this compound is reduced to sulfite by APS reductase (APR); in fungi and some cyanobacteria and gamma-proteobacteria, a second activation step, phosphorylation to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is necessary before reduction to sulfite by PAPS reductase (PAPR). We found previously that the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR genes (Koprivova, A., Meyer, A. J., Schween, G., Herschbach, C., Reski, R., and Kopriva, S. (2002) J. Biol. Chem. 277, 32195-32201). To assess the function of the two enzymes, we compared their biochemical properties by analysis of purified recombinant proteins. APR from Physcomitrella is very similar to the well characterized APRs from seed plants. On the other hand, we found that the putative PAPR preferentially reduces APS. Sequence analysis, analysis of UV-visible spectra, and determination of iron revealed that this new APR, named PpAPR-B, does not contain the FeS cluster, which was previously believed to determine the substrate specificity of the otherwise relatively similar enzymes. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. These findings show that APS reduction without the FeS cluster is possible and that plant sulfate assimilation is predominantly dependent on reduction of APS.  相似文献   

3.
Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.  相似文献   

4.
5.
A D Hanson  J Rivoal  L Paquet    D A Gage 《Plant physiology》1994,105(1):103-110
The compatible solute 3-dimethylsulfoniopropionate (DMSP) is accumulated by certain salt-tolerant flowering plants and marine algae. It is the major biogenic precursor of dimethylsulfide, an important sulfur-containing trace gas in the atmosphere. DMSP biosynthesis was investigated in Wollastonia biflora (L.) DC. [= Wedelia biflora (L.) DC., Melanthera biflora (L.) Wild, Asteraceae]. After characterizing DMSP and glycine betaine accumulation in three diverse genotypes, a glycine betaine-free genotype was chosen for radiotracer and stable isotope-labeling studies. In discs from young leaves, label from [U-14C]methionine was readily incorporated into the dimethylsulfide and acrylate moieties of DMSP. This establishes that DMSP is derived from methionine by deamination, decarboxylation, oxidation, and methylation steps, without indicating their order. Five lines of evidence indicated that methylation is the first step in the sequence, not the last. (a) In pulse-chase experiments with [14C]methionine, S-methylmethionine (SMM) had the labeling pattern expected of a pathway intermediate, whereas 3-methylthiopropionate (MTP) did not. (b) [14C]SMM was efficiently converted to DMSP but [14C]MTP was not. (c) The addition of unlabeled SMM, but not of MTP, reduced the synthesis of [14C]DMSP from [14C]methionine. (d) The dimethylsulfide group of [13CH3,C2H3]SMM was incorporated as a unit into DMSP. (e) When [C2H3,C2H3]SMM was given together with [13CH3]methionine, the main product was [C2H3,C2H3]DMSP, not [13CH3,C2H3]DMSP or [13CH3,13CH3]DMSP. The stable isotope labeling results also show that the SMM cycle does not operate at a high level in W. biflora leaves.  相似文献   

6.
7.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

8.
Many marine algae produce 3-dimethylsulfoniopropionate (DMSP), a potent osmoprotective compound whose degradation product dimethylsulfide plays a central role in the biogeochemical S cycle. Algae are known to synthesize DMSP via the four-step pathway, l-Met → 4-methylthio-2-oxobutyrate → 4-methylthio-2-hydroxybutyrate → 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) → DMSP. Substrate-specific enzymes catalyzing the first three steps in this pathway were detected and partially characterized in cell-free extracts of the chlorophyte alga Enteromorpha intestinalis. The first is a 2-oxoglutarate-dependent aminotransferase, the second an NADPH-linked reductase, and the third an S-adenosylmethionine-dependent methyltransferase. Sensitive radiometric assays were developed for these enzymes, and used to show that their activities are high enough to account for the estimated in vivo flux from Met to DMSP. The activities of these enzymes in other DMSP-rich chlorophyte algae were at least as high as those in E. intestinalis, but were ≥20-fold lower in algae without DMSP. The reductase and methyltransferase were specific for the d-enantiomer of 4-methylthio-2-hydroxybutyrate in vitro, and both the methyltransferase step and the step(s) converting DMSHB to DMSP were shown to prefer d-enantiomers in vivo. The intermediate DMSHB was shown to act as an osmoprotectant, which indicates that the first three steps of the DMSP synthesis pathway may be sufficient to confer osmotolerance.  相似文献   

9.
10.
Sulfur is an essential nutrient for all organisms. Plants take up most sulfur as inorganic sulfate, reduce it and incorporate it into cysteine during primary sulfate assimilation. However, some of the sulfate is partitioned into the secondary metabolism to synthesize a variety of sulfated compounds. The two pathways of sulfate utilization branch after activation of sulfate to adenosine 5'-phosphosulfate (APS). Recently we showed that the enzyme APS kinase limits the availability of activated sulfate for the synthesis of sulfated secondary compounds in Arabidopsis. To further dissect the control of sulfur partitioning between the primary and secondary metabolism, we analysed plants in which activities of enzymes that use APS as a substrate were increased or reduced. Reduction in APS kinase activity led to reduced levels of glucosinolates as a major class of sulfated secondary metabolites and an increased concentration of thiols, products of primary reduction. However, over-expression of this gene does not affect the levels of glucosinolates. Over-expression of APS reductase had no effect on glucosinolate levels but did increase thiol levels, but neither glucosinolate nor thiol levels were affected in mutants lacking the APR2 isoform of this enzyme. Measuring the flux through sulfate assimilation using [(35) S]sulfate confirmed the larger flow of sulfur to primary assimilation when APS kinase activity was reduced. Thus, at least in Arabidopsis, the interplay between APS reductase and APS kinase is important for sulfur partitioning between the primary and secondary metabolism.  相似文献   

11.
With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5'-phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with d-sorbitol or d-mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O-acetyl-l-serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N-deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]-sulphate feeding experiments showed that the addition of glucose to dark-treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N-deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co-ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergistically.  相似文献   

12.
A gene was cloned from Burkholderia cepacia DBO1 that is homologous with Escherichia coli cysH encoding 3'-phosphoadenylylsulfate (PAPS) reductase. The B. cepacia gene is the most recent addition to a growing list of cysH homologs from a diverse group of sulfate-assimilating bacteria whose products show greater homology to plant 5'-adenylylsulfate (APS) reductase than they do to E. coli CysH. The evidence reported here shows that the cysH from one of the species, Pseudomonas aeruginosa, encodes APS reductase. It is able to complement an E. coli cysH mutant and a cysC mutant, indicating that the enzyme is able to bypass PAPS, synthesized by the cysC product. Insertional knockout mutation of P. aeruginosa cysH produced cysteine auxotrophy, indicating its role in sulfate assimilation. Purified P. aeruginosa CysH expressed as a His-tagged recombinant protein is able to reduce APS, but not PAPS. The enzyme has a specific activity of 5.8 micromol. min(-1). mg of protein(-1) at pH 8.5 and 30 degrees C with thioredoxin supplied as an electron donor. APS reductase activity was detected in several bacterial species from which the novel type of cysH has been cloned, indicating that this enzyme may be widespread. Although an APS reductase from dissimilatory sulfate-reducing bacteria is known, it shows no structural or sequence homology with the assimilatory-type APS reductase reported here. The results suggest that the dissimilatory and assimilatory APS reductases evolved convergently.  相似文献   

13.
A fungus, Fusarium lateritium, with dimethylsulfoniopropionate (DMSP) lyase activity was isolated from both seawater and a salt marsh due to its ability to grow on DMSP (with the evolution of dimethyl sulfide) as the sole source of carbon. This is the first reported case of DMSP lyase activity in a fungus. Several other common fungal genera tested did not have DMSP lyase activity. DMSP was taken up more rapidly by F. lateritium than it was utilized, leading to its intracellular accumulation. Inhibitor studies with nystatin and cyanide indicated that DMSP uptake was an energy-dependent process. The lyase was inducible by its substrate, DMSP (Km, 1.2 mM), and by the substrate analogs choline and glycine betaine. During induction, DMSP lyase activity increased with time and then dropped rapidly. This loss of activity could be prevented by spiking the culture with fresh DMSP or choline. The Vmax for DMSP lyase was 34.7 mU · mg of protein−1. The inhibitory effects of nystatin, and p-chloromercuriphenylsulfonate on DMSP lyase activity suggested that the enzyme is cytosolic. Because plants like Spartina (a marsh grass) and marine algae contain high concentrations of DMSP, we speculate that DMSP-utilizing fungi may be involved in their decay.  相似文献   

14.
A cDNA encoding a plant-type APS reductase was isolated from an axenic cell suspension culture of Catharanthus roseus (Genbank/EMBL-databank accession number U63784). The open reading frame of 1392 bp (termed par) encoded for a protein (Mr=51394) consisting of a N-terminal transit peptide, a PAPS reductase-like core and a C-terminal extension with homology to the thioredoxin-like domain of protein disulfide isomerase. The APS reductase precursor was imported into pea chloroplasts in vitro and processed to give a mature protein of approximately 45 kDa. The homologous protein from pea chloroplast stroma was detected using anti:par polyclonal antibodies. To investigate the catalytical function of the different domains deleted par proteins were purified. ParDelta1 lacking the transit sequence liberated sulfite from APS (Km 2.5+/-0.23 microM) in vitro with glutathione (Km 3+/-0.64 mM) as reductant (Vmax 2.6+/-0.14 U mg-1, molecular activity 126 min-1). ParDelta2 lacking the transit sequence and C-terminal domain had to be reconstituted with exogenous thioredoxin as reductant (Km 15. 3+/-1.27 microM, Vmax 0.6+/-0.014 U mg-1). Glutaredoxin, GSH or DTT were ineffective substitutes. ParDelta1 (35.4%) and parDelta2 (21. 8%) both exhibited insulin reductase activity comparable to thioredoxin (100%). Protein disulfide isomerase activity was observed for parDelta1.  相似文献   

15.
16.
ATP sulfurylase, the first enzyme in the sulfate assimilation pathway of plants, catalyzes the formation of adenosine phosphosulfate from ATP and sulfate. Here we report the cloning of two cDNAs encoding ATP sulfurylase (APS1 and APS2) from Camellia sinensis. They were isolated by RT-PCR and RACE-PCR reactions. The expression of APS1 and APS2 are correlated with the presence of ATP sulfurylase enzyme activity in cell extracts. APS1 is a 1415-bp cDNA with an open reading frame predicted to encode a 360-amino acid, 40.5kD protein; APS2 is a 1706-bp cDNA with an open reading frame to encode a 465-amino acid, 51.8kD protein. The predicted amino acid sequences of APS1 and APS2 have high similarity to ATP sulfurylases of Medicago truncatula and Solanum tuberosum, with 86% and 84% identity respectively. However, they share only 59.6% identity with each other. The enzyme extracts prepared from recombinant Escherichia coli containing Camellia sinensis APS genes had significant enzyme activity.  相似文献   

17.
18.
Adenosine 5'-phosphosulphate reductase (APR) is considered to be a key enzyme of sulphate assimilation in higher plants. We analysed the diurnal fluctuations of total APR activity and protein accumulation together with the mRNA levels of three APR isoforms of Arabidopsis thaliana. The APR activity reached maximum values 4 h after light onset in both shoots and roots; the minimum activity was detected at the beginning of the night. During prolonged light, the activity remained stable and low in shoots, but followed the normal rhythm in roots. On the other hand, the activity decreased rapidly to undetectable levels within 24 h of prolonged darkness both in shoots and roots. Subsequent re-illumination restored the activity to 50% in shoots and to 20% in roots within 8 h. The mRNA levels of all three APR isoforms showed a diurnal rhythm, with a maximum at 2 h after light onset. The variation of APR2 mRNA was more prominent compared to APR1 and APR3. 35SO42- feeding experiments showed that the incorporation of 35S into reduced sulphur compounds in vivo was significantly higher in light than in the dark. A strong increase of mRNA and protein accumulation as well as enzyme activity during the last 4 h of the dark period was observed, implying that light was not the only factor involved in APR regulation. Indeed, addition of 0.5% sucrose to the nutrient solution after 38 h of darkness led to a sevenfold increase of root APR activity over 6 h. We therefore conclude that changes in sugar concentrations are also involved in APR regulation.  相似文献   

19.
20.
It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5'-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5'-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25-30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank(TM), revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium. The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. M?ssbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号