首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of distamycin A with calf spleen DNA is investigated by the method of hyperchromic spectra. Hyperchromic spectra of complexes are partitioned into the components corresponding to the denaturation A-T and G+C base pairs and dissociation of the ligand, fractions of respective components are found as a function of temperature. A scheme of melting of successive regions of DNA -with different G+C content together with the scheme of distamycin A redistribution in the course of thermal denaturation is presented.  相似文献   

2.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

3.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

4.
The effect of the DNA-binding oligopeptide distamycin A on the B to A transition of DNA in ethanol/water solutions has been studied by means of CD. (The overbars indicate that it does not matter which particular form of the corresponding families is considered.) The results show that increasing the concentration of distamycin A reverses the A conformation (in 82% ethanol) to the B conformation due to its strong binding and stabilization of the latter. In accordance with previous data for pure aqueous solutions, a site size of 3.5 base pairs is obtained from the studies in water/ethanolic solutions. From the data on the B to A transition in the presence of distamycin A, we estimated the length of the cooperativity ν0 = 10 base pairs. The results demonstrate that the oligopeptide systems of distamycin, as well as those of netropsin, are effective stabilizers of the DNA B-conformation.  相似文献   

5.
Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA.Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA).poly(dT) regions. The pentapeptide binds 6-7-base-pair sites with a preference for poly(dA).poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A + T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A + T rich binding site.  相似文献   

6.
Different binding affinities of various distamycin analogs including the deformylated derivative with poly(dA-dC) X poly(dG-dT) were investigated using CD measurements. The inhibitory effect of distamycins on the DNAase I cleavage activity of DNA duplexes strongly supports the binding data. The base specificity of the ligand interaction with duplex DNA depends on the chain length of distamycin analogs. Netropsin, distamycin-2 and the deformylated distamycin-3 show no binding to dG X dC containing sequences at moderate ionic strength and are classified as highly dA X dT specific. In contrast distamycin having three, four or five methylpyrrolecarboxamide groups also forms more or less stable complexes with dG X dC-containing duplexes. These ligands possess a lower basepair specificity. The correlation between binding behavior and oligopeptide structure shows that presence of the number of hydrogen acceptor and donor sites determines the basepair and sequence specificity. The additional interaction with dG X dC pairs becomes essential when the number of hydrogen acceptor sites exceeds n = 3.  相似文献   

7.
Abstract

Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA·Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA)·poly(dT) regions. The pentapeptide binds 6–7-base-pair sites with a preference for poly(dA)·poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A+T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A+T rich binding site.  相似文献   

8.
The specificity of DNA X dye binding was studied. Antibiotic distamycin A was bound most strongly to the DNA sequences composed of three or more neighboring A X T pairs. Acrichin and 7-aminoacrichin proved to be weak specific inhibitors binding predominantly within the A X T regions.  相似文献   

9.
10.
It has previously been shown that open complex formation at a promoter containing a block substitution of nonalternating A-T sequences in the spacer DNA separating the contacted -10 and -35 regions could be accelerated by distamycin. No stimulation was observed at a promoter with a substitution of alternating A-T base pairs in the same region or at the promoter with wild-type spacer. Here we compare the effect of distamycin [tris(N-methylpyrrolecarboxamide), formally a P3] with that of its extended homologues P4, P5, and P6. It is found that the stimulatory potential of these synthetic oligopeptides which bind in the minor groove of DNA ranks in the order P4 greater than (distamycin, P5) greater than P6. The interaction of these peptides with the three promoters was studied by monitoring the positions of the promoter DNA protected from MPE-Fe(II) cleavage in the presence of different concentrations of ligand. The results suggest that a higher affinity of oligopeptide for the spacer DNA than for the -10 and/or -35 region is a necessary, but not sufficient condition for stimulation. Different patterns of protected DNA regions are seen with each of the three promoters; with distamycin, P4, and P5, a unique arrangement of protected regions is observed for the variant containing nonalternating A-T base pairs in its spacer DNA. These data support the hypothesis that differences in the ways the minor-groove binders interact with each of the promoter variants account for the observed differential stimulation. We further postulate that it is a ligand-induced structural change in the nonalternating A-T DNA which is responsible for the activation of open complex formation at the promoter containing this substitution.  相似文献   

11.
Molecular recognition of B-DNA by Hoechst 33258.   总被引:19,自引:14,他引:5       下载免费PDF全文
The binding sites of Hoechst 33258, netropsin and distamycin on three DNA restriction fragments from plasmid pBR322 were compared by footprinting with methidiumpropyl-EDTA X Fe(II) [MPE X Fe(II)]. Hoechst, netropsin and distamycin share common binding sites that are five +/- one bp in size and rich in A X T DNA base pairs. The five base pair protection patterns for Hoechst may result from a central three base pair recognition site bound by two bisbenzimidazole NHs forming a bridge on the floor of the minor groove between adjacent adenine N3 and thymine O2 atoms on opposite helix strands. Hydrophobic interaction of the flanking phenol and N-methylpiperazine rings would afford a steric blockade of one additional base pair on each side.  相似文献   

12.
Different binding affinities of various distamycin analogs including the deformylated derivative with poly(dA-dC)·poly(dG-dT) were investigated using CD measurements. The inhibitory effect of distamycins on the DNAase I cleavage activity of DNA duplexes strongly supports the binding data. The base specificity of the ligand interaction with duplex DNA depends on the chain length of distamycin analogs. Netropsin, distamycin-2 and the deformylated distamycin-3 show no binding to dG·dC containing sequences at moderate ionic strength and are classified as highly dA·dT specific. In contrast distamycin having three, four or five methylpyrrolecarboxamide groups also forms more or less stable complexes with dG·dC-containing duplexes. These ligands possess a lower basepair specificity. The correlation between binding behavior and oligopeptide structure shows that presence of the number of hydrogen acceptor and donor sites determines the basepair and sequence specificity. The additional interaction with dG·dC pairs becomes essential when the number of hydrogen acceptor sites exceeds n = 3.  相似文献   

13.
Distamycin and netropsin, a class of minor groove binding nonintercalating agents, are characterized by their B-DNA and A-T base-specific interactions. To understand the conformational and chemical basis of the above specificities, the DNA-binding characteristics of a novel synthetic analogue of distamycin have been studied. The analogue, mPD derivative, has the requisite charged end groups and a number of potential hydrogen-bonding loci equal to those of distamycin. The difference in the backbone curvatures of the ligands, distamycin, the mPD derivative, and NSC 101327 (another structurally analogous compound), is a major difference between these ligands. UV and CD spectroscopic studies reported here show the following salient features: The mPD derivative recognizes only B-DNA, to which it binds via the minor groove. On the other hand, unlike distamycin, it binds with comparable affinities to A-T and G-C base pairs in a natural DNA. These DNA-binding properties are compared with those reported earlier for distamycin and NSC 101327 [Zimmer, Ch., & Wahnert, U. (1986) Prog. Biophys. Mol. Biol. 47, 31-112]. The backbone structures of these three ligands were compared to show the progressive decrease in curvatures in the order distamycin, mPD derivative, and NSC 101327. The plausible significance of the backbone curvature vis-à-vis the characteristic B-DNA and AT-specific binding of distamycin is discussed. To our knowledge, this is the first attempt (with a model synthetic analogue) to probe the possible influence of backbone curvature upon the specificity of interactions of the distamycin class of groove-binding ligands with DNA.  相似文献   

14.
Techniques of DNase I and micrococcal nuclease footprinting have been used to compare the binding sites for berenil, netropsin and distamycin on two different DNA fragments. Each ligand binds to the A + T-rich zones which contain clusters of at least four A.T base pairs. Neither guanosine nor cytidine nucleotides appear to be allowed within the A + T-rich runs which constitute the preferred binding sites, although they are sometimes protected from DNase I cleavage in neighbouring regions. Berenil and netropsin share with distamycin the property of causing enhanced rates of cleavage at certain sequences flanking their binding sites. There are significant differences in the concentrations of each ligand required to produce defined patterns of protection, seemingly dependent upon the nature (and possibly the gross base composition) of the piece of DNA being used in the experiment.  相似文献   

15.
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F.  相似文献   

16.
The specific interaction of distamycin A and analogs with DNA's and synthetic deoxypolynucleotide duplexes were studied in detail by means of circular dichroism and the data were analyzed together with viscosity results of several natural DNA's. At low ligand to nucleotide ratio the previously reported specific binding to (A-T) pairs of DNA is verified by a highly favoured interaction with (A-T)-enriched segments of distamycins containing four and five methylpyrrole carboxamide units. At higher distamycin concentration a second specific binding to (G-C) pairs most probably through hydrogen bonding is established. Viscometric results suggest a distamycin-induced local bending of the helix and could support the idea of a preferential alignment of the ligand molecule along only one strand in the groove which differs from the netropsin interaction mechanism. The possibility of an overlapping binding of the oligopeptides in the small groove is discussed.  相似文献   

17.
18.
Specific interactions of distamycin with G-quadruplex DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the terminal G-quartets and contacting the flanking bases. These results demonstrate the utility of distamycin as a probe of G4 DNA–protein interactions and show that there are (at least) two distinct modes of protein–G4 DNA recognition which can be distinguished by sensitivity to distamycin.  相似文献   

19.
Smith AE  Buchmueller KL 《Biochemistry》2011,50(38):8107-8116
The molecular mechanism for the displacement of HMGA1 proteins from DNA is integral to disrupting their cellular function, which is linked to many metastatic cancers. Chemical shift and NOESY NMR experiments provide structural evidence for the displacement of an AT hook peptide (DNA binding motif of HMGA1 proteins) by both monomeric and dimeric distamycin. However, the displaced AT hook alters distamycin binding by weakening the distamycin:DNA complex, while slowing monomeric distamycin dissociation when AT hook is in excess. The central role of the AT hook was evaluated by monitoring full-length HMGA1a protein binding using fluorescence anisotropy. HMGA1a was effectively displaced by distamycin, but the cooperative binding exhibited by distamycin was eliminated by displaced HMGA1a. Additionally, these studies indicate that HMGA1a is displaced from the DNA by 1 equiv of distamycin, suggesting the ability to develop therapeutics that take advantage of the positively cooperative nature of HMGA1a binding.  相似文献   

20.
The interaction of the antibiotics distamycin A, distamycin analogue and netropsin with chromatin of calf thymus has been studied by circular dichroism measurements and by gel filtration. The minor groove of DNA in chromatin is accessible by 83–89% to the binding of these antibiotics as compared with that of free DNA. The present results combined with our data on the methylation of chromatin with dimethylsulphate [3] strongly suggest that the minor groove of DNA in chromatin is not occupied by chromatin proteins.Abbreviations DM distamycin A - DM2 analogue of distamycin - Nt netropsin - CD spectra circular dichroism spectra  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号