首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed T cell differentiation is critically influenced by the complement of costimulatory and coinhibitory signals transmitted during initial antigen encounter. We previously showed that selective CD28 blockade with novel domain antibodies that leave CTLA-4-mediated coinhibitory signaling intact resulted in more profound attenuation of donor-reactive T cell responses and improved graft survival in a murine transplant model. Selective CD28 blockade was also associated with decreased ICOS expression on donor-reactive CD8+ T cell responses as compared to CTLA-4 Ig, but the functional importance of this reduced ICOS expression was not known. In this study, we created retrogenic donor-reactive CD8+ T cells that overexpress ICOS in order to determine whether reduced ICOS expression mechanistically underlies the increased efficacy of selective CD28 blockade in controlling graft-specific T cell responses as compared to conventional costimulation blockade with CTLA-4 Ig. Results indicated that the ability of selective CD28 blockade to blunt donor-reactive CD8+ T cell expansion following transplantation was independent of its ability to inhibit ICOS expression. Furthermore, we have previously published that 2B4 coinhibitory signals are functionally important for controlling graft-specific CD8+ T cell responses in mice treated with CD28 blockade. Here we used a co-adoptive transfer approach to determine that 2B4 coinhibitory signals on antigen-specific CD8+ T cells function in a cell-intrinsic manner to limit ICOS expression in the setting of selective CD28 blockade.  相似文献   

2.
ICOS, a CD28 family member expressed on activated CD4(+) and CD8(+) T cells, plays important roles in T cell activation and effector function. Here we studied the role of ICOS in graft-vs-host disease (GVHD) mediated by CD4(+) or CD8(+) T cells in allogeneic bone marrow transplantation. In comparison of wild-type and ICOS-deficient T cells, we found that recipients of ICOS(-/-) CD4(+) T cells exhibited significantly less GVHD morbidity and delayed mortality. ICOS(-/-) CD4(+) T cells had no defect in expansion, but expressed significantly less Fas ligand and produced significantly lower levels of IFN-gamma and TNF-alpha. Thus, ICOS(-/-) CD4(+) T cells were impaired in effector functions that lead to GVHD. In contrast, recipients of ICOS(-/-) CD8(+) T cells exhibited significantly enhanced GVHD morbidity and accelerated mortality. In the absence of ICOS signaling, either using ICOS-deficient donors or ICOS ligand-deficient recipients, the levels of expansion and Tc1 cytokine production of CD8(+) T cells were significantly increased. The level of expansion was inversely correlated with the level of apoptosis, suggesting that increased ability of ICOS(-/-) CD8(+) T cells to induce GVHD resulted from the enhanced survival and expansion of those cells. Our findings indicate that ICOS has paradoxical effects on the regulation of alloreactive CD4(+) and CD8(+) T cells in GVHD.  相似文献   

3.
Activation of naive Th lymphocytes by the TCR and the costimulatory molecule, CD28, is believed to provide competent signals for differentiation to effector cells. Such activated cells proliferated and expressed IL-2, but arrested in an immature state maintained by CTLA-4. Although unresponsive to restimulation by TCR/CD28 alone, restimulation with TCR/CD28 and either Stat4- or Stat6-mediated cytokine signals rescued cells to proliferate and differentiate to the appropriately matched canonical Th subsets. Addition of IL-4 at defined periods revealed that naive T cells were receptive to IL-4-mediated differentiation for up to 3 days after their initial priming. A Stat-dependent anergic checkpoint between clonal expansion and effector cell differentiation may defer the cytokine profile to be instructed at the site of infection, thus preventing the unregulated development of potentially damaging effector cells.  相似文献   

4.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

5.
Akt is a neutral amplifier for Th cell differentiation   总被引:2,自引:0,他引:2  
Both CD28 and its relative, inducible costimulator (ICOS), have a binding motif for phosphatidylinositol 3-kinase (PI3K) in their cytoplasmic tail, and the binding of PI3K leads to activation of a serine/threonine kinase, Akt. The role of Akt in cytokine production and helper T (Th) cell differentiation remains obscure. In this study, we found that enforced expression of the constitutively active form (E40K) of Akt rendered CD4(+) T cells activated. Wild-type of Akt and E40K promoted Th1 cell differentiation in C57BL/6-derived and Th1-polarized BALB/c-derived CD4(+) T cells, while both promoted Th2 cell differentiation in BALB/c-derived and Th2-polarized C57BL/6 CD4(+) T cells. E40K also facilitated Th1 differentiation in CD4(+) T cells from IL-4-deficient mice with the BALB/c background. E40K up-regulated expression of NF-AT and c-Myb, which may be related to the augmentation of cytokine production by E40K. These findings indicate that the mechanism by which Akt augments cytokine production via CD28 and ICOS is Th cell type-specific and reflects the intracellular status affected by the cytokine milieu. We conclude that Akt is a neutral amplifier of T cell activation and Th differentiation.  相似文献   

6.
7.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

8.
9.
Whereas B7-1/B7-2 and CD28/cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) serve as the main switches regulating the clonal composition of activated naive T cells, other B7 family members fine-tune the expansion and properties of activated T cells. Inducible costimulatory molecule (ICOS)-B7h promotes T-dependent antibody isotype switching and expansion of effector cells. Effector T cells trafficking into inflamed tissues interact with antigen-presenting cells there and are regulated by PD-1 and its ligands. B7-H3 and B7x could control the interaction between effector T cells and the peripheral tissues. The different varieties of regulatory T cells could regulate both naive T cell activation and effector function through costimulatory receptor/ligands.  相似文献   

10.
Long-term resistance to Toxoplasma gondii is dependent on the development of parasite-specific T cells that produce IFN-gamma. CD28 is a costimulatory molecule important for optimal activation of T cells, but CD28(-/-) mice are resistant to T. gondii, demonstrating that CD28-independent mechanisms regulate T cell responses during toxoplasmosis. The identification of the B7-related protein 1/inducible costimulator protein (ICOS) pathway and its ability to regulate the production of IFN-gamma suggested that this pathway may be involved in the CD28-independent activation of T cells required for resistance to T. gondii. In support of this hypothesis, infection of wild-type or CD28(-/-) mice with T. gondii resulted in the increased expression of ICOS by activated CD4(+) and CD8(+) T cells. In addition, both costimulatory pathways contributed to the in vitro production of IFN-gamma by parasite-specific T cells and when both pathways were blocked, there was an additive effect that resulted in almost complete inhibition of IFN-gamma production. Although in vivo blockade of the ICOS costimulatory pathway did not result in the early mortality of wild-type mice infected with T. gondii, it did lead to increased susceptibility of CD28(-/-) mice to T. gondi associated with reduced serum levels of IFN-gamma, increased parasite burden, and increased mortality compared with the control group. Together, these results identify a critical role for ICOS in the protective Th1-type response required for resistance to T. gondii and suggest that ICOS and CD28 are parallel costimulatory pathways, either of which is sufficient to mediate resistance to this intracellular pathogen.  相似文献   

11.
Subsets of murine dendritic cells (DCs) from the spleen differ in their ability to induce proliferative responses in both primary and secondary CD4(+) T cells. Recent evidence indicates that lymphoid-related CD8(+) DCs fail to provide appropriate signals to freshly isolated secondary CD4(+) T cells to sustain their proliferation in vitro. In the present study, we examined peptide-pulsed CD8(-) and CD8(+) DCs for ability to stimulate Th1 and Th2 cell clones with the same Ag specificity. Defective ability to induce proliferation was selectively shown by CD8(+) DCs presenting Ag to the Th1 clone. The deficiency in CD8(+) DCs was overcome by CD40 triggering before peptide pulsing. When exposed to CD8(+) DCs in the absence of CD40 activation, the Th1 clone expressed low levels of CD40 ligand and high levels of surface CTLA-4. Neutralization of CTLA-4 during the DC/T cell coculture resulted in increased CD40 ligand expression and proliferation of T cells. Remarkably, the activation of CD40 on DCs under conditions that would increase Th1 cell proliferation, also resulted in down-regulation of surface CTLA-4. These results confirm differential effects of CD8(+) and CD8(-) DCs in the stimulation of Ag-primed Th cells. In addition, they suggest that reciprocal regulation of CD40 ligand and CTLA-4 expression occurs in Th1 cells exposed to CD8(+) DCs.  相似文献   

12.
The functional role of inducible costimulator (ICOS)-mediated costimulation was examined in an in vivo model of alloantigen-driven Th1 or Th2 cytokine responses, the parent-into-F(1) model of acute or chronic graft-vs-host disease (GVHD), respectively. When the Ab specific for mouse ICOS was injected into chronic GVHD-induced mice, activation of B cells, production of autoantibody, and development of glomerulonephritis were strongly suppressed. In contrast, the same treatment enhanced donor T cell chimerism and host B cell depletion in acute GVHD induced host mice. Blocking of B7-CD28 interaction by injection of anti-B7-1 and anti-B7-2 Abs inhibited both acute and chronic GVHD. These observations clearly indicate that the costimulatory signal mediated by CD28 caused the initial allorecognition resulting in the clonal expansion of alloreactive T cells, whereas the costimulatory signal mediated by ICOS played a critical role in the functional differentiation and manifestation of alloreactive T cells. Furthermore, treatment with anti-ICOS Ab selectively suppresses Th2-dominant autoimmune disease.  相似文献   

13.
Regulatory T cells (Treg) are crucial for self-tolerance. It has been an enigma that Treg exhibit an anergic phenotype reflected by hypoproliferation in vitro after TCR stimulation but undergo vigorous proliferation in vivo. We report in this study that murine Treg are prone to death but hyperproliferative in vitro and in vivo, which is different from conventional CD4(+)Foxp3(-) T cells (Tcon). During in vitro culture, most Treg die with or without TCR stimulation, correlated with constitutive activation of the intrinsic death pathway. However, a small portion of the Treg population is more sensitive to TCR stimulation, particularly weak stimulation, proliferates more vigorously than CD4(+) Tcon, and is resistant to activation-induced cell death. Treg proliferation is enhanced by IL-2 but is less dependent on CD28-mediated costimulation than that of Tcon. We demonstrate further that the surviving and proliferative Treg are ICOS(+) whereas the death-prone Treg are ICOS(-). Moreover, ICOS(+) Treg contain much stronger suppressive activity than that of ICOS(-) Treg. Our data indicate that massive death contributes to the anergic phenotype of Treg in vitro and suggest modulation of Treg survival as a therapeutic strategy for treatment of autoimmune diseases and cancer.  相似文献   

14.
Although activation and subsequent expansion of naive CD4(+) T cells within lymph nodes is well characterized, the fate of T effector cells activated within peripheral tissues during secondary reactions is poorly defined. Therefore, we studied the recruitment, proliferation and egress of antigen-specific Th1 effector cells in comparison with nonspecific Th1 cells throughout a delayed-type hypersensitivity reaction (DTH). Although we observed a high turnover of Th1 effector cells with unspecific high-rate recruitment and CCR7-dependent egress from the inflamed tissue in the early, acute DTH phase, a strong, selective accumulation of antigen-specific T cells occurred during the chronic, late DTH phase. This was mainly based on local proliferation of CD4(+) effector cells within the DTH tissue and concomitant retention. Considering the strong CCR7-dependent Th cell egress found in this model, the reduced CCR7 expression on antigen-specific T cells isolated from late-phase DTH tissue most likely contributes to the retention of these cells within the tissue. Thus, peripheral tissues can support not only the proliferation of CD8(+) T cells, as recently shown, but also that of CD4(+) T effector cells, forming a pool of tissue-resident T cells.  相似文献   

15.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

16.

Background

Th2 cell activation and T regulatory cell (Treg) deficiency are key features of allergy. This applies for asthma and rhinitis. However with a same atopic background, some patients will develop rhinitis and asthma, whereas others will display rhinitis only. Co-receptors are pivotal in determining the type of T cell activation, but their role in allergic asthma and rhinitis has not been explored. Our objective was to assess whether allergen-induced T cell activation differs from allergic rhinitis to allergic rhinitis with asthma, and explore the role of ICOS, CD28 and CTLA-4.

Methods

T cell co-receptor and cytokine expressions were assessed by flow cytometry in PBMC from 18 house dust mite (HDM) allergic rhinitics (R), 18 HDM allergic rhinitics and asthmatics (AR), 13 non allergic asthmatics (A) and 20 controls, with or without anti-co-receptors antibodies.

Results

In asthmatics (A+AR), a constitutive decrease of CTLA-4+ and of CD4+CD25+Foxp3+ cells was found, with an increase of IFN-γ+ cells. In allergic subjects (R + AR), allergen stimulation induced CD28 together with IL-4 and IL-13, and decreased the proportion of CTLA-4+, IL-10+ and CD4+CD25+Foxp3+ cells. Anti-ICOS and anti-CD28 antibodies blocked allergen-induced IL-4 and IL-13. IL-13 production also involved CTLA-4.

Conclusions

T cell activation differs between allergic rhinitis and asthma. In asthma, a constitutive, co-receptor independent, Th1 activation and Treg deficiency is found. In allergic rhinitis, an allergen-induced Treg cell deficiency is seen, as well as an ICOS-, CD28- and CTLA-4-dependent Th2 activation. Allergic asthmatics display both characteristics.  相似文献   

17.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

18.
We have established a comprehensive in vivo mouse model for the CD4(+) T cell response to an "innocuous" versus "dangerous" exogenous Ag and developed an in vivo test for tolerance. In this model, specific gene-expression signatures, distinctive upregulation of early T cell-communication molecules, and differential expansion of effector T cells (Teff) and regulatory T cells (Treg) were identified as central correlates of T cell tolerance and T cell immunity. Different from essentially all other T cell-activation molecules, ICOS was found to be induced in the immunity response and not by T cells activated under tolerogenic conditions. If expressed, ICOS did not act as a general T cell costimulator but selectively caused a massive expansion of effector CD4(+) T cells, leaving the regulatory CD4(+) T cell compartment largely undisturbed. Thus, ICOS strongly contributed to the dramatic change in the balance between Ag-specific Teff and Treg from ~1:1 at steady state to 21:1 at the height of the immune response. This newly defined role for the balance of Teff to Treg, together with its known key function in T cell help for B cells, establishes ICOS as a central mediator of immunity. Given its exceptionally selective induction on CD4(+) T cells under inflammatory, but not tolerogenic, conditions, ICOS emerges as a pivotal effector molecule in the early decision between tolerance and immunity to exogenous Ag.  相似文献   

19.
20.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号