首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to confirm in vivo N-acetylation of 2-amino-6-methyl-dipyrido[1,2-a:3′,2′-d]imidazole (GluP-1) in rats, we developed a new high-performance liquid chromatography (HPLC) method for detecting the N-acetyl derivative of Glu-P-1 in animal organs. Using this method, N-acetyl-Glu-P-1 was detected in rat liver, kidney and intestinal contents 6 h after intraperitoneal injection of Glu-P-1. This fact provides evidence to support in vivo N-acetylation of Glu-P-1 in rats.  相似文献   

2.
Possible interferences with aflatoxin B1 metabolism, of some compounds naturally present in food (quercetin, beta-naphthoflavone), resulting from way of cooking method (2-aminodipyrido [1,2-a; 1',2'-d] imidazole (Glu-P-2), norharmane; NH) or used as food additives (butylated hydroxytoluene; BHT) have been studied in vivo by evaluating the production of adducts to glutathione and adducts to serum proteins in laboratory rats. Glu-P-2 and norharmane inhibit strongly the production of adducts to glutathione whereas quercetin and beta-naphthoflavone have only a low effect. BHT is completely ineffective. The adducts to proteins are inhibited by the five compounds, norharmane being the most efficient.  相似文献   

3.
Metabolic activation by cytochrome P-450 of glutamic acid pyrolysis products, 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) and 2-amino-dipyrido(1,2,-a:3',2'-d)imidazole (Glu-P-2), to mutagenic metabolites was studied using Salmonella typhimurium TA98 as a tester strain. Cytochrome P-450, NADPH-cytochrome P-450 reductase and NADPH were essential requirements for the activation of these compounds. Of the four forms of cytochrome P-450 examined, polychlorinated biphenyls (PCB) P-448 and 3-methylcholanthrene (MC) P-448 purified from liver microsomes of rats treated with a PCB mixture and MC, respectively, showed high activity in the activation of both Glu-P-1 and Glu-P-2. The presence of three metabolites from Glu-P-1 or Glu-P-2 was demonstrated by high performance liquid chromatographic (HPLC) analysis. Among the metabolites of Glu-P-1, two metabolites were mutagenic without any further enzymatic activation. In accordance with the results of a mutation assay, PCB P-448 also exhibited higher activity to form the major mutagenic metabolite of Glu-P-1. The major active metabolite of Glu-P-1 was characterized as N-hydroxy-Glu-P-1 by chemical analysis using oxidizing and reducing reagents and by mass spectrometry.  相似文献   

4.
2-Amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) is a mutagen and carcinogen isolated from a glutamic acid pyrolysate. When this 14C-labeled compound was administered to male F344 rats at a dose of 0.3 mCi (20.8 mg)/kg b.w., 70% of the radioactivity was excreted into the bile in 24 h. On HPLC analysis of this bile, several metabolites of Glu-P-1 were found with unmetabolized Glu-P-1. One of the mutagenic metabolites was identified as N-acetyl-Glu-P-1. This metabolite had a specific mutagenic activity of about one quarter of that of Glu-P-1 and its amount in the bile corresponded to a few percent of the dose of Glu-P-1 administered.  相似文献   

5.
Human monomorphic and polymorphic arylamine acetyltransferases (EC 2.3.1.5) were expressed in monkey kidney COS-1 cells and used to study the N- and O-acetylation of a number of carcinogenic amines and their N-hydroxy metabolites. The monomorphic enzyme N-acetylated the aromatic amines, 2-aminofluorene and 4-aminobiphenyl, and also O-acetylated their N-hydroxy derivatives. None of the food-derived heterocyclic amines (Glu-P-1, PhIP, IQ, MeIQx) were substrates and their N-hydroxy metabolites were poorly O-acetylated by this isozyme. By contrast, the polymorphic acetyltransferase catalyzed the N-acetylation of both aromatic amines, and to a lesser extent, Glu-P-1 and PhIP. However, all six N-hydroxy amine substrates were readily O-acetylated to form DNA-bound adducts by the polymorphic isozyme. These data suggest that, for the heterocyclic amine carcinogens, rapid acetylator individuals will be predisposed to their genotoxicity.  相似文献   

6.
In order to study the possible detoxification mechanisms of the carcinogenic arylamine, 2-amino-6-methyldipyrido[1,2-a: 3',2'-d]imidazole (Glu-P-1), the in vitro non-enzymatic reaction of 2-nitroso-6-methyldipyrido[1,2-a: 3',2'-d]imidazole (NO-Glu-P-1) with reduced glutathione (GSH) was examined at pH 7.4 under both aerobic and anaerobic conditions. Two GSH-arylamine adducts were isolated and found to contain the Glu-P-1 and GSH moieties in a 1:1 molar ratio via an N-S linkage. Their structures were assigned as sulfinamide (-NH-SO-) and N-hydroxy-sulfonamide (-N(OH)-SO2-) by their behaviour under acidic and basic conditions and by UV-VIS, 1H-NMR, infrared and mass spectrometries. Also, a N-hydroxy-sulfonamide adduct was produced when NO-Glu-P-1 and cysteine were reacted at pH 7.4. The N-hydroxy-sulfonamide structure is a new binding form between arylnitroso compounds and thiols. The formation of these adducts may also take place in vivo as a detoxification of toxic arylamines since GSH is abundant in organs such as liver or kidney.  相似文献   

7.
The mutagenicities of various carcinogens induced by liver microsomes are increased in the presence of liver cytosol in rodents. It still remains, however, to be clarified which factor or factors in the cytosol enhance(s) the microsome-mediated mutagenicities. In the present study, we sought to identify the enhancing factor in liver cytosol prepared from rats using the microsome-mediated Salmonella mutagenicity induced by 2-amino-6-methyldipyrido [1,2-a:3',2'-d] imidazole (Glu-P-1). By a series of chromatographic steps, we purified a 16-kDa protein on SDS-PAGE from the cytosol of rat livers. Partial amino acid sequences of this protein revealed that the 16-kDa protein was copper, zinc-superoxide dismutase (CuZn-SOD). The purified CuZn-SOD enhanced the microsome-mediated mutagenicities of several heterocyclic amines and aromatic amines. Furthermore, bovine and human CuZn-SOD also enhanced the microsome-mediated mutagenicity of Glu-P-1. The CuZn-SOD caused an increase in the mutagenicity of N-hydroxylated Glu-P-1 formed from Glu-P-1 by the microsomes, although CuZn-SOD did not affect either the formation or the stability of the N-hydroxylated derivative. These findings suggest that the enhancing cytosol factor for the mutagenicity of Glu-P-1 is CuZn-SOD, which stimulates the mutagenicity of N-hydroxylated Glu-P-1 without changing its metabolism.  相似文献   

8.
Y Yin  O Wada  S Manabe 《Mutation research》1989,215(1):107-113
In order to determine a suitable indicator for estimating the exposure levels of the dietary carcinogen 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), a carcinogenic glutamic acid pyrolysis product, the levels of Glu-P-1 bound to blood components were monitored for 8 weeks by a high-performance liquid chromatography method after the dietary carcinogen was administered as single oral doses (0.2-50 mg) to rabbits. In all rabbits dosed with Glu-P-1, Glu-P-1 in erythrocytes was detectable even on day 42 after administration. Glu-P-1 in plasma disappeared faster than did Glu-P-1 in erythrocytes. Glu-P-1 levels in rabbit hemoglobin were linearly related to administered doses at all points of time investigated. The results suggest that Glu-P-1 covalently bound to hemoglobin is very suitable for monitoring long-term exposure levels.  相似文献   

9.
The interaction of Glu-P-1 (2-amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole) and Glu-P-2 (2-aminodipyrido[1,2-a:3′,2′-d]imidazole) with DNA were studied. Agarose gel electrophoresis of Closed-circular DNA treated with an excess of DNA-relaxing enzyme in the presence of increasing amounts of Glu-P-1 or Glu-P-2 revealed that Glu-P-1 and Glu-P-2 intercalated into DNA. Correlation with the binding parameters, measured by optical titrations, showed that Glu-P-1 and Glu-P-2 caused about 20° unwinding of the DNA double helix.  相似文献   

10.
The induction of chromosome aberrations, micronuclei and SCEs was studied in hepatocytes of F344 rats exposed in vivo to hepatocarcinogens. Hepatocytes were isolated and allowed to proliferate in Williams' medium E supplemented with epidermal growth factor. Cells were fixed after a culture period of 48 h. Oral administration of dimethylnitrosamine at doses of 2.5-20 mg/kg body weight (bw) induced (1) chromosome aberrations in up to 27% of the metaphase cells 2-48 h after its administration, (2) SCEs with a frequency of up to 0.9 per chromosome 2-48 h after its administration, and (3) micronuclei in up to 2.9% of the cells 16-48 h after its administration. Oral administration of 2-acetylaminofluorene at doses of 6.25-200 mg/kg bw induced (1) chromosome aberrations in up to 35% of the metaphase cells after 2-48 h, (2) SCEs at up to 0.9 per chromosome and (3) micronuclei in up to 2.5% of the cells with a maximum after 4 h. Oral administration of CCl4, a non-genotoxic hepatocarcinogen, at a dose of 1600 mg/kg bw did not induce chromosome aberrations, SCEs or micronuclei within 4-72 h. Intraperitoneal injections of Trp-P-1, Glu-P-1, MeIQx, IQ and nitro-IQ resulted in chromosome aberrations in up to 16% of the metaphase cells and SCEs at up to 0.9 per chromosome, while injections of Trp-P-2 and Glu-P-2 produced SCEs at up to 0.7 and 1.1 per chromosome, respectively. The present method of in vivo cytogenetic assay using rats without partial hepatectomy or mitogen treatment in vivo should be useful for evaluating the tumor-initiating activities of hepatocarcinogens.  相似文献   

11.
Rats were pretreated with a single oral dose of different mutagenic fractions obtained from glutamic acid pyrolysate: Glu-P-2 (2-amino-dipyrido[1,2-a:3',2'-d]imidazole), Glu-P-3 (3-amino-4,6-dimethyldipyrido[1,2-a:3',2'-d]imidazole), the tar residue and a basic extract (B2). The liver S9 fractions of these animals were used to investigate the mutagenic activation of 3 promutagens (2-aminoanthracene, Glu-P-2 and Glu-P-3) in Salmonella typhimurium strain TA1538. Different factors were analyzed; influence of the structure of the compounds administered, doses, time interval between pretreatment and sacrifice and sex of the rats. Interpretation of the hepatic induction effects was complicated, however, by the fact that simple oral pretreatment with the solvents (DMSO or ethanol) enhances the activation of the substrates tested for mutagenicity. A dose-effect relationship was found between 2-AA mutagenic activation and Glu-P-2 pretreatment. Glu-P-3 induced the activation of 2-AA more than did Glu-P-2, in the male as in the female. The mutagenicity of 2-AA activated with S9 from male rats was found to be optimal after 24 h pretreatment with 20 mg Glu-P-2/kg b.w. The mutagenicity of Glu-P-2 was poorly influenced by the different pretreatments applied to either the males or the females, whereas some dose effect was found in the autoinduction of Glu-P-2 mutagenicity. Compared to Glu-P-2, the mutagenicity of Glu-P-3 was increased at higher levels when tested with S9 from males pretreated with the same compound, but no differences were observed between males and females.  相似文献   

12.
Most heterocyclic amines formed during the cooking of meat and fish have been shown to form adducts in the livers of rats. Recently, however, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), administered in the diet to Fischer 344 (F344) rats for 4 weeks, was shown to produce the highest levels of adducts in the heart. In the present study 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-6-methyldipyrido[1,2-a:1',2'-d]imidazole (Glu-P-1) were given to F344 rats at carcinogenic dose levels (IQ 0.03%, MeIQx 0.04%, Trp-P-1 0.015%, Glu-P-1 0.05%) in the diet for 4 weeks. DNA adducts in the liver and heart were analyzed by 32P-postlabeling. DNA adducts were demonstrated to appear in the hearts of all animals exposed to heterocyclic amines at the following levels: IQ, 1.8 adducts/10(7) nucleotides, MeIQx, 3.8/10(7) ntd, Trp-P-1, 20/10(7) ntd and Glu-P-1, 7.2/10(7) ntd. Values for the heart were 10-20% of the respective liver adduct levels. Heart adducts increased linearly throughout the observed period when MeIQx was administered for up to 40 weeks. When MeIQx feeding was discontinued after 20 weeks and the animals subsequently given the basal diet, the adduct level at 20 weeks did not change during the following 20 weeks. A possible role for heart DNA alterations caused by food-borne heterocyclic amines in the development of age-related myopathies and cardiovascular disease is not inconceivable.  相似文献   

13.
A simple fluorometric assay for N-hydroxyarylamine O-acetyltransferase is described and compared with a nucleic acid-binding assay. The assay method is based on the finding that the highly mutagenic 2-hydroxyamino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (N-OH-Glu-P-1) was reduced to the corresponding amine, 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), through N-acetoxy-Glu-P-1 as the reactive intermediate in the presence of N-hydroxyarylamine O-acetyltransferase, acetyl-CoA, and a sulfhydryl compound. The formation of Glu-P-1 was determined by its characteristic fluorescence intensity at 445 nm with excitation wavelength at 376 nm. The reductive reaction was inhibited by the addition of tRNA, DNA, and poly(G), to which the enzymatic product, N-acetoxy Glu-P-1, bound effectively due to its electrophilic nature. Since the fluorometric assay for the O-acetyltransferase is rapid, simple, and sensitive as compared with the nucleic acid-binding method using radioisotope-labeled N-hydroxyarylamine, this method is applicable to the general assay for the formation of reactive N-acetoxy-Glu-P-1.  相似文献   

14.
The mutagenic effect of 2-amino-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2) was compared with that of the 3-amino, 3-nitro, or 3-N-hydroxylated derivatives of the same base ring with methyl groups at positions 4 and 6 of the molecule. The compounds were tested in Salmonella typhimurium strain TA98 without metabolic activation and in the presence of different concentrations of subcellular fractions from livers or small intestines of rats pretreated with different P448/P450 inducers. The 4,6-dimethyl compounds are always more mutagenic than Glu-P-2. Pretreatment with Aroclor 1254 (ARO) is the most effective inducer in the activation of the 2- and 3-amino compounds by liver S9, whereas the same fraction decreases the mutagenicity of the 3-nitro derivative. S9 from small intestine increased the mutagenic effect of the 3-nitro and 3-N-hydroxylated compounds, but it was unable to activate the amino compounds.  相似文献   

15.
16.
A potent mutagen, 2-amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole(Glu-P-1), isolated from pyrolysates of L-glutamic acid and casein, was metabolically activated and bound to DNA. An activated form was identified as 2-hydroxyamino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole(N-OH-Glu-P-1). Synthetic N-OH-Glu-P-1 reacted with DNA only after O-acetylation to give a modified DNA, which on hydrolysis gave 2-(C8-guanyl)amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole(gua-Glu-P-1). The same adduct was isolated from DNA modified with Glu-P-1 by microsomes in vitro, as reported earlier.  相似文献   

17.
Effects of caffeic acid and chlorogenic acid on mutagenicity were studied using the Salmonella typhimurium system. These compounds had inhibitory effects on the mutagenicity of Trp-P-1 and Glu-P-2. Caffeic acid completely eliminated the mutagenicity induced by activated Glu-P-2. Some compounds analogous to caffeic acid, such as cinnamic acid, coumaric acid, and ferulic acid, also significantly decreased the mutagenicity of Glu-P-2.  相似文献   

18.
The mutagenic activation of various promutagens by liver microsomes from dogs, monkeys and humans was investigated. Dog liver microsomes efficiently catalyzed the mutagenic activation of Trp-P-2 and Glu-P-1 followed by IQ and AAF. Monkey liver microsomes were most active in the activation of IQ followed by Glu-P-1, AAF and Trp-P-2. Although there were remarkable individual differences, human liver microsomes were found to be most active in the mutagenic activation of IQ followed by Trp-P-2, Glu-P-1 and AAF. Antibodies against rat P-448-H inhibited the mutagenic activation of Glu-P-1, Trp-P-2 and IQ in rat and dog liver microsomes, and Glu-P-1 and Trp-P-2 in monkey liver microsomes. The activation of Glu-P-1 and IQ in human liver microsomes was also strongly inhibited by anti-P-448-H antibodies. The amounts of cytochrome P-450 cross-reactive with anti-P-448-H antibodies in human liver microsomes highly correlated with the capacity to activate Glu-P-1, Trp-P-2 and IQ but not AAF.  相似文献   

19.
All azo colorants whose metabolism can liberate a carcinogenic arylamine, are suspected of having carcinogenic potential. Therefore, a new azo compound 4-phenethyl-5-[4-(1-(2-hydroxyethyl)-3,5-dimethyl-4-pyrazolylazo)phenyl]-2,4-dihydro-3H-1,2,4-triazole-3-thione (substrate) was prepared to investigate its in vitro and in vivo biotransformation in rats by HPLC. Chromatographic separation of substrate and its metabolites was performed using a Chromasil C(18) column. The mobile phase consisted of acetonitrile and water in a linear gradient system. From the biotransformation of this compound, the reduction metabolite 4-(2-phenethyl)-5-(4-aminophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione was identified by comparing it to reference standard by HPLC-DAD. In the in vivo study, identification of the unknown peak which was the N-acetylation metabolite was confirmed by LC-MS spectrometry. Besides this, the azo compound was reduced to its corresponding amine in intestinal and cytosolic parts. In addition, oxidation of the methyl group and the phenyl ring, and reduction of azo group to hydrazo were identified in the cytosolic part using LC-MS.  相似文献   

20.
The urinary levels of 2,3-dinor-6-oxo-PGF1 alpha (PGI2-M), a major metabolite of PGI2, are determined by the balance between the amount of PGI2 synthesized and the extent of its further metabolic oxidation. The purpose of the present study was to determine if the urinary excretion of PGI2-M can be used as a reliable index of the in vivo production of PGI2 in both normal Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). This involved the exclusion of differences in metabolism between these two strains of rats. In order to do so, we monitored the urinary excretion of PGI2-M during paired intravenous infusions of 6-oxo-PGF1 alpha (the stable product of the spontaneous hydrolysis of PGI2) in conscious, unrestrained SHR and WKY rats aged 12-15 weeks, in doses ranging from 250 to 700 ng. In one experiment, PGI2 was infused instead of 6-oxo-PGF1 alpha. The results of these experiments indicate that SHR and WKY rats are equal with regard to the transformation of 6-oxo-PGF1 alpha and PGI2 into PGI2-M. For both groups, there is a good correlation between the amount of 6-oxo-PGF1 alpha infused and the amount of PGI2-M excreted in urine. These observations confirm the validity of using the urinary levels of 2,3-dinor-6-oxo-PGF1 alpha as an index of PGI2 production in both WKY and SHR. In addition, they support the conclusions drawn from our previous studies, namely that SHR do not produce more PGI2 than WKY rats in vivo, contrary to the situation prevailing in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号