首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heavy metal ion sensor was constructed by cross-linking melanin onto the gold electrode of quartz crystal microbalance (QCM). A mercury ion sensitivity of 518+/-37 Hz/ppm was observed, a substantial increase in sensitivity compared to previous reports of 10-50 Hz/ppm with the limit of detection at 5 ppb. Detection of other metal ions including Sn(2+), Ge(4+), Li(+), Zn(2+), Cu(2+), Bi(3+), Co(2+), Al(3+), Ni(2+), Ag(+), and Fe(3+) were also performed. Unexpectedly, binding of Mn(7+), Pb(2+), Cd(2+), and Cr(3+) increased resonant frequencies. The surface profile of melanin thin film upon binding to metal ions was investigated by atomic force microscopy (AFM). Structural change of melanin upon binding to metal ions was characterized by circular dichroism and by infrared spectroscopy. The current study provides the first example of melanin-coated piezoelectric sensor showing high sensitivity and selectivity to metal ions.  相似文献   

2.
The ability of Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Cu(2+), Cd(2+), Al(3+), V(4+), Hg(2+), Pd(2+), Au(3+), and Pt(4+) to provoke liquid crystalline (LC) phases in high molecular weight DNA was investigated. The alkali and alkaline earth metal ions provoked typical cholesteric/columnar structures, whereas transition metal ions precipitated DNA into solid/translucent gel-like aggregates. Heavy metal ions reduced viscosity of DNA solution, disrupting rigid, rod-like DNA structure necessary for LC textures. Three-layer quantum mechanical-molecular mechanical (QM/MM) studies of Li(+), Na(+), K(+), Mg(2+), and Ca(2+) binding DNA fragment suggested several possible binding modes of these ions to the phosphate groups. The dianion mode of metal binding, involving the phosphate groups of both strands of DNA, allowed for higher DNA binding affinity of the alkaline earth metal ions. These results have implications in understanding the biological role of metal ions and developing DNA-based sensors and nanoelectronic devices.  相似文献   

3.
An automatic feedback control system incorporating a porous Teflon tubing sensor was developed and a strain of yeast was cultivated semibatchwise in mineral salt medium by feeding pure ethanol as the sole carbon source. In the control system, The ethanol concentration was continuously measured by the porous Teflon tubing sensor combined with a flame ionization detector, and its output signals were furnished to an automatic feed controller which controlled an ethanol feed pump so that deviations from the set level of ethanol concentration might be corrected. The controller was constructed on the basis of proportional-differential negative feedback control of which the proportional sensitivity and differentiation constants were estimated from the dynamic mass balance of ethanol. Precise measurement of temperature and compensation of the detector output signals for temperature fluctuations of culture broth were necessary to achieve good control. Cultivation experiments were carried out with three levels of concentrations: 102, 103, and 104 ppm. The relative deviations of the concentrations were less than ±0.5% for the 103- and 104- ppm levels but a little offset arose for the 102-ppm levels. The growth of cells was at first exponential and then almost linear when the dissolved oxygen concentration dropped considerably.  相似文献   

4.
Metal-ion complexes of Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Pb(2+), Cd(2+), Hg(2+) with 4,6-O-benzylidene-N-(o-carboxyphenyl)-beta-D-glucopyranosylamine were synthesized and isolated as solid products and characterized by analytical means as well as by spectral techniques, such as, 1H and 13C NMR, FTIR, absorption, FAB mass spectrometry, optical rotation and CD. While the alkali metal ions formed ML type of complexes, the other metal ions formed ML(2) type complexes. Molecular weights of the complexes of Li(+), Na(+) and K(+) were established based on the molecular-ion peaks in the FAB mass spectra. The saccharide portion remains in the beta-anomeric form even after the complexation. The spectral data, as well as the trends observed in the chemical shifts, indicate the interaction preferences between this glycosyl amine and different metal ions, and further reveal certain structural features of the complexes.  相似文献   

5.
Environmental tobacco smoke is a major factor influencing the indoor air quality. Various toxic compounds emitted during tobacco smoking into the environment have a significant influence on the chemical composition of human biological fluids. The thiocyanate concentration in saliva is a biochemical measure, frequently used as an objective indicator of tobacco consumption. The goal of this study was to find significant relationships between salivary thiocyanates and other inorganic ions, which are constituents of natural saliva (Na(+), K(+), Mg(2+), Ca(2+), Cl(-), PO(4)(3-)) and to present the effectiveness of the proposed sample preparation procedure combined with ion chromatography technique for the determination of inorganic ions in human saliva samples collected from passive, moderate and heavy smokers.  相似文献   

6.
We investigated the features of the inward-rectifier K channel Kir1.1 (ROMK) that underlie the saturation of currents through these channels as a function of permeant ion concentration. We compared values of maximal currents and apparent K(m) for three permeant ions: K(+), Rb(+), and NH(4)(+). Compared with K(+) (i(max) = 4.6 pA and K(m) = 10 mM at -100 mV), Rb(+) had a lower permeability, a lower i(max) (1.8 pA), and a higher K(m) (26 mM). For NH(4)(+), the permeability was reduced more with smaller changes in i(max) (3.7 pA) and K(m) (16 mM). We assessed the role of a site near the outer mouth of channel in the saturation process. This site could be occupied by either permeant ions or low-affinity blocking ions such as Na(+), Li(+), Mg(2+), and Ca(2+) with similar voltage dependence (apparent valence, 0.15-0.20). It prefers Mg(2+) over Ca(2+) and has a monovalent cation selectivity, based on the ability to displace Mg(2+), of K(+) > Li(+) ~ Na(+) > Rb(+) ~ NH(4)(+). Conversely, in the presence of Mg(2+), the K(m) for K(+) conductance was substantially increased. The ability of Mg(2+) to block the channels was reduced when four negatively charged amino acids in the extracellular domain of the channel were mutated to neutral residues. The apparent K(m) for K(+) conduction was unchanged by these mutations under control conditions but became sensitive to the presence of external negative charges when residual divalent cations were chelated with EDTA. The results suggest that a binding site in the outer mouth of the pore controls current saturation. Permeability is more affected by interactions with other sites within the selectivity filter. Most features of permeation (and block) could be simulated by a five-state kinetic model of ion movement through the channel.  相似文献   

7.
Five metallic cations (Fe(3+), Cr(3+), Ca(2+), Mg(2+), Mn(2+); concentration range, 1.85 x 10(-4) to 37 x 10(-4)m) were incorporated individually as chlorides into nutrient broth and agar media used for the recovery of phenol-treated Escherichia coli. The effects observed varied with the concentration and the ionic species. In nutrient agar, Fe(3+) and Cr(3+) were generally beneficial but were toxic at 37 x 10(-4)m. Of the divalent ions tested, Ca(2+) and Mg(2+) usually gave higher counts in nutrient broth, except at a concentration of 9.25 x 10(-4)m, whereas the effect of Mn(2+) was rather variable. Two possible explanations are suggested to explain these effects. Toxic materials may be removed from the media by the precipitates formed on the addition of Fe(3+) or Cr(3+), or, in the case of the divalent ions, the integrity of the bacterial cell membranes may be maintained.  相似文献   

8.
Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the exposure medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexisting cations (commonly Al(3+), Ca(2+), Mg(2+), H(+), and Na(+)) on the uptake and toxicity of these and other ions (such as Cu(2+), Zn(2+), Ni(2+), Cd(2+), and H(2)AsO(4)(-)) to plants were studied in terms of the electrical properties of PMs. Increased concentrations of cations or decreased pH in rooting media, whether in solution culture or in soils, reduced the negativity of the electrical potential at the PM exterior surface (ψ(0)(o)). This reduction decreased the activities of metal cations at the PM surface and increased the activities of anions such as H(2)AsO(4)(-). Furthermore, the reduced ψ(0)(o) negativity increased the surface-to-surface transmembrane potential difference, thus increasing the electrical driving force for cation uptake and decreasing the driving force for anion uptake across PMs. Analysis of measured uptake and toxicity of ions using electrostatic models provides evidence that uptake and toxicity are functions of the dual effects of ψ(0)(o) (i.e. altered PM surface ion activity and surface-to-surface transmembrane potential difference gradient). This study provides novel insights into the mechanisms of plant-ion interactions and extends current theory to evaluate ion bioavailability and toxicity, indicating its potential utility in risk assessment of metal(loid)s in natural waters and soils.  相似文献   

9.
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.  相似文献   

10.
Single metal ion-phospholipid complexes are observed in biphasic electrospray ionization mass spectrometry (BESI-MS) using a dual-channel microsprayer. Such a microsprayer makes it possible to put into contact two immiscible liquids within the Taylor cone. Thus, L-α-dipalmitoyl phosphatidylcholine (DPPC) dissolved in 1,2-dichloroethane (DCE) reacts with aqueous metal cations (M = Na(+), K(+), Ca(2+), Cu(2+), La(3+)) yielding the formation of [M-DPPC(n)](z+) complexes. The number of phospholipid molecules ranges from 1 to 4 for monovalent ions, to 8 for divalent and to more than 10 for trivalent ions respectively. The large number of ligands observed involves the formation of solvent free single ion-phospholipid complexes.  相似文献   

11.
The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-degrading strain Acidovorax sp. HB01 was isolated from an activated sludge sample. A novel PHBV depolymerase with a molecular weight of 43.4 kDa was purified to homogeneity from the culture supernatant of the HB01 strain. The optimum pH and temperature of the PHBV depolymerase were 7.0 and 50 °C, respectively. The PHBV depolymerase can also degrade polyhydroxybutyrate, poly (3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(caprolactone); however, the PHBV degradation activity of the depolymerase is higher than its activity against the other polymers. Effect of metal ions and various inhibitors on the PHBV depolymerase activity was examined. The addition of Na(+), K(+), and Ca(2+) markedly increased the hydrolysis rate, whereas the enzyme activity was inhibited by Zn(2+), Mg(2+), Mn(2+), and particularly by Cu(2+) and Fe(2+). Ethylenediaminetetraacetic acid was found to have a significant inhibitory effect. The main degradation product of depolymerase was identified as the 3-hydroxybutyric acid monomer and 3-hydroxyvaleric acid monomers via mass spectrometry.  相似文献   

12.
L-type calcium channels are Ca(2+) binding proteins of great biological importance. They generate an essential intracellular signal of living cells by allowing Ca(2+) ions to move across the lipid membrane into the cell, thereby selecting an ion that is in low extracellular abundance. Their mechanism of selection involves four carboxylate groups, containing eight oxygen ions, that belong to the side chains of the "EEEE" locus of the channel protein, a setting similar to that found in many Ca(2+)-chelating molecules. This study examines the hypothesis that selectivity in this locus is determined by mutual electrostatic screening and volume exclusion between ions and carboxylate oxygens of finite diameters. In this model, the eight half-charged oxygens of the tethered carboxylate groups of the protein are confined to a subvolume of the pore (the "filter"), but interact spontaneously with their mobile counterions as ions interact in concentrated bulk solutions. The mean spherical approximation (MSA) is used to predict ion-specific excess chemical potentials in the filter and baths. The theory is calibrated using a single experimental observation, concerning the apparent dissociation constant of Ca(2+) in the presence of a physiological concentration of NaCl. When ions are assigned their independently known crystal diameters and the carboxylate oxygens are constrained, e.g., to a volume of 0.375 nm(3) in an environment with an effective dielectric coefficient of 63.5, the hypothesized selectivity filter produces the shape of the calcium binding curves observed in experiment, and it predicts Ba(2+)/Ca(2+) and Na(+)/Li(+) competition, and Cl(-) exclusion as observed. The selectivities for Na(+), Ca(2+), Ba(2+), other alkali metal ions, and Cl(-) thus can be predicted by volume exclusion and electrostatic screening alone. Spontaneous coordination of ions and carboxylates can produce a wide range of Ca(2+) selectivities, depending on the volume density of carboxylate groups and the permittivity in the locus. A specific three-dimensional structure of atoms at the binding site is not needed to explain Ca(2+) selectivity.  相似文献   

13.
Equilibrium constants for binding to plant plasma membranes have been reported for several metal ions, based upon adsorption studies and zeta-potential measurements. LogK values for the ions are these: Al(3+), 4.30; La(3+), 3.34; Cu(2+), 2.60; Ca(2+) and Mg(2+), 1.48; Na(+) and K(+), 0 M(-1). These values correlate well with logK values for ion binding to many organic and inorganic ligands. LogK values for metal ion binding to 12 ligands were normalized and averaged to produce a scale for the binding of 49 ions. The scale correlates well with the values presented above (R(2)=0.998) and with ion binding to cell walls and other biomass. The scale is closely related to the charge (Z) and Pauling electronegativity (PE) of 48 ions (all but Hg(2+)); R(2)=0.969 for the equation (Scale values)=-1.68+Z(1.22+0.444PE). Minimum rhizotoxicity of metal ions appears to be determined by binding strengths: log a(PM,M)=1.60-2.41exp[0.238(Scale values)] determines the value of ion activities at the plasma membrane surface (a(PM,M)) that will ensure inhibition of root elongation. Additional toxicity appears to be related to softness, accounting for the great toxicity of Ag(+), for example. These binding-strength values correlate with additional physiological effects and are suitable for the computation of cell-surface electrical potentials.  相似文献   

14.
Renal function was examined in adult rainbow trout (Oncorhynchus mykiss) after chronic exposure to a sublethal level of dietary Cd (500 mg/kg diet) for 52 d and during a subsequent challenge to waterborne Cd (10 microg/L) for 72 h. Dietary Cd had no major effects on UFR (urine flow rate) and GFR (glomerular filtration rate) but caused increased renal excretion of glucose, protein, and major ions (Mg(2+), Zn(2+), K(+), Na(+), Cl(-) but Ca(2+)). However, dietary Cd did not affect any plasma ions except Na(+) which was significantly elevated in the Cd-acclimated trout. Plasma glucose and ammonia levels fell by 25% and 36% respectively, but neither plasma nor urine urea was affected in Cd-acclimated fish. Dietary Cd exposure resulted in a remarkable increase of Cd load in the plasma (48-fold, approximately 22 ng/mL) and urine (60-fold, 8.9 ng/mL), but Cd excretion via the kidney was negligible on a mass-balance basis. Clearance ratio analysis indicates that all ions, Cd, and metabolites were reabsorbed strongly (58-100%) in both na?ve and dietary Cd exposed fish, except ammonia which was secreted in both groups. Mg(2+), Na(+), Cl(-) and K(+) reabsorption decreased significantly (3-15%) in the Cd-exposed fish relative to the control. Following waterborne Cd challenge, GFR and UFR were affected transiently, and only Mg(2+) and protein excretion remained elevated with no recovery with time in Cd-acclimated trout. Urinary Ca(2+) and Zn(2+) excretion rates dropped with an indication of renal compensation towards plasma declines of both ions. Cadmium challenge did not cause any notable effects on urinary excretion rates of metabolites. However, a significant decrease in Mg(2+) reabsorption but an increase in total ammonia secretion was observed in the Cd-acclimated fish. The study suggests that dietary Cd acclimation involves physiological costs in terms of renal dysfunction and elevated urinary losses.  相似文献   

15.
Bacteroides amylophilus has growth requirements for Na(+), PO(4) (3-), K(+), and small quantities of Mg(2+). No requirement could be shown for Ca(2+) in media previously found growth-yield-limiting for Bacteroides succinogenes. Deletion of Co(2+), Mn(2+), Cl(-), or SO(4) (2-) did not affect growth. Quantitative studies indicate that Na(+), K(+), and PO(4) (3-) have differing effects on the growth of B. amylophilus. A concentration of sodium and potassium ions affects both growth rate and growth yield, whereas a phosphate concentration markedly affects growth yield, but affects growth rate only slightly, if at all. The sodium requirement of B. amylophilus is absolute. It cannot be replaced by K(+), Li(+), Rb(+), or Cs(+). The latter three monovalent cations are toxic to B. amylophilus if supplied to the organism at Na(+)-replacing concentrations. K(+) is inactive at similar concentrations. The K(+) requirement of B. amylophilus may be satisfied by Rb(+). The concentration of Na(+) required by B. amylophilus for abundant growth suggests that B. amylophilus should be considered a slightly halophilic organism. The results suggest that Na(+) may be a more frequent requirement among terrestial bacteria obtained from relatively low-salt environments than has been previously believed.  相似文献   

16.
Factors contributing to dwarfing in the mangrove Avicennia marina   总被引:2,自引:0,他引:2  
Naidoo G 《Annals of botany》2006,97(6):1095-1101
BACKGROUND AND AIMS: In Richards Bay, South Africa, Avicennia marina frequently exhibits a distinct productivity gradient, with tree height decreasing markedly from 6-10 m in the fringe zone to <1.5 m in the dwarf zone which is 120 m inland at a slightly higher elevation. In this investigation, soil physico-chemical conditions between fringe and dwarf A. marina were compared and the constraints imposed by any differences on mangrove ecophysiology and productivity determined. METHODS: Soil and plant samples were analysed for inorganic ions using spectrophotometry. Gas exchange measurements were taken with an infrared gas analyser and chlorophyll fluorescence with a fluorometer. Xylem psi was determined with a pressure chamber and chlorophyll content with a chlorophyll absorbance meter. RESULTS: In the dwarf site, soil salinity, total cations, electrical conductivity and soil concentrations of Na(+), K(+), Ca(2+), Mg(2+), Zn(2+), Mn(2+) and Cu(2+) were significantly higher than those in the fringe zone. Soil water potential and the concentration of soil P, however, were significantly lower in the dwarf site. In the leaves, Na(+) was the predominant ion and its concentration was 24 % higher in dwarf than fringe mangroves. Leaf concentrations of K(+), Ca(2+), Mg(2+), Mn(2+) and P, however, were significantly lower in dwarf mangroves. Photosynthetic performance, measured by gas exchange and chlorophyll fluorescence, was significantly reduced in the dwarf plants. CONCLUSIONS: The results suggest that hydro-edaphic factors contribute to high soil salinities, low water potentials, water stress and ion imbalance within tissues including P deficiency, which in interaction, contribute to dwarfing in Avicennia marina.  相似文献   

17.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

18.
Zn(2+) and Co(2+) ions are known to promote human growth hormone reversible dimerization. In these studies, dimerization was also shown to be initiated by nine other metal ions: Cd(2+), Hg(2+), Cu(2+), Ag+, Au(3+), Au+, Pd(2+), Ni(2+), and Pt(4+). In some cases (Hg(2+), Ag(+), Au(3+), and Ni(2+)) formation of higher oligomers also took place. In addition further detailed investigation of dimerization in the presence of Zn(2+) ions was carried out.  相似文献   

19.
The tight junction of epithelial cells excludes macromolecules but allows permeation of ions. However, it is not clear whether this ion-conducting property is mediated by aqueous pores or by ion channels. To investigate the permeability properties of the tight junction, we have developed paracellular ion flux assays for four major extracellular ions, Na(+), Cl(-), Ca(2+), and Mg(2+). We found that the tight junction shares biophysical properties with conventional ion channels, including size and charge selectivity, dependency of permeability on ion concentration, competition between permeant molecules, anomalous mole-fraction effects, and sensitivity to pH. Our results support the hypothesis that discrete ion channels are present at the tight junction. Unlike conventional ion channels, which mediate ion transport across lipid bilayers, the tight junction channels must orient parallel to the plane of the plasma membranes to support paracellular ion movements. This new class of paracellular-tight junction channels (PTJC) facilitates the transport of ions between separate extracellular compartments.  相似文献   

20.
The nutritional conditions for the production of l-glutamine by Flavobacterium rigense strain 703 were investigated. The optimum concentration of ammonia for achieving the highest yield of l-glutamine (25 mg/ml of broth) was relatively broad, from 0.9 to 1.6%, whereas fumaric acid had a narrow optimum range, near 5.5%. High concentration of inorganic ions such as chloride or sulfate ion clearly inhibited cell growth. Therefore, ammonium salts other than (NH(4))(2)-fumarate were unsuitable for the highest production. The optimum concentration of (NH(4))(2)-fumarate was 7%. To reduce the concentration of fumaric acid in the medium, many substances were evaluated as substitutes. The fumaric acid concentration required for highest l-glutamine yield could not be replaced by any one of the compounds tested. However, part of fumaric acid could be replaced with succinic acid and cupric ion; 4% (NH(4))(2)-fumarate plus 2.5% succinic acid or 5% (NH(4))(2)-fumarate plus 1 mM cupric ion produced results similar to 7% (NH(4))(2)-fumarate in the fermentation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号