首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O(2) for the first hour and then 8 or 10% O(2) for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O(2) fraction (Fi(O(2))) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 microg.kg(-1).min(-1) continuously), Fi(O(2)) = 0.10; protocol 3: Acz given as above, but with Fi(O(2)) reduced to 0.08 to match the arterial Po(2) (Pa(O(2))) observed during hypoxia in controls. Pa(O(2)) was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 +/- 1 to 23 +/- 1 mmHg, and pulmonary vascular resistance increased from 464 +/- 26 to 679 +/- 40 dyn.s(-1).cm(-5) (P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 +/- 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn.s(-1).cm(-5). These values did not change during hypoxia. In dogs given Acz at 10% O(2), the arterial Pa(O(2)) was 50 Torr owing to hyperventilation, whereas in those breathing 8% O(2) the Pa(O(2)) was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po(2), nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.  相似文献   

2.
Systemic hypoxia (SHx) produces microvascular inflammation in mesenteric, cremasteric, and pial microcirculations. In anesthetized rats, SHx lowers arterial blood pressure (MABP), which may alter microvascular blood flow and microvascular Po(2) (Pm(O(2))) and influence SHx-induced leukocyte-endothelial adherence (LEA). These experiments attempted to determine the individual contributions of the decreases in Pm(O(2)), venular blood flow and shear rate, and MABP to the hypoxia-induced increase in LEA. Cremaster microcirculation of anesthetized rats was visualized by intravital microscopy. Pm(O(2)) was measured by a phosphorescence-quenching method. SHx [inspired Po(2) of 70 Torr for 10 min, MABP of 65 +/- 3 mmHg, arterial Po(2) (Pa(O(2))) of 33 +/- 1 Torr] and cremaster ischemia (MABP of 111 +/- 7 mmHg, Pa(O(2)) of 86 +/- 3 Torr) produced similar Pm(O(2)): 7 +/- 2 and 6 +/- 2 Torr, respectively. However, LEA increased only in SHx (1.9 +/- 0.9 vs. 11.2 +/- 1.1 leukocytes/100 microm, control vs. SHx, P < 0.05). Phentolamine-induced hypotension (MABP of 55 +/- 4 mmHg) in normoxia lowered Pm(O(2)) to 26 +/- 6 Torr but did not increase LEA. Cremaster equilibration with 95% N(2)-5% CO(2) during air breathing (Pa(O(2)) of 80 +/- 1 Torr) lowered Pm(O(2)) to 6 +/- 1 Torr but did not increase LEA. On the other hand, when cremaster Pm(O(2)) was maintained at 60-70 Torr during SHx (Pa(O(2)) of 35 +/- 1 Torr), LEA increased from 2.1 +/- 1.1 to 11.1 +/- 1.5 leukocytes/100 microm (P < 0.05). The results show a dissociation between Pm(O(2)) and LEA and support the idea that SHx results in the release of a mediator responsible for the inflammatory response.  相似文献   

3.
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) while jugular venous oxygen saturation (Sv(O(2))) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 +/- 5 W (mean +/- SE) that was continued to exhaustion with a group average time of 26.8 +/- 5.8 min. Despite no significant change in MAP during exercise, MCA V(mean) decreased from 70.2 +/- 3.6 to 57.4 +/- 5.4 cm/s, Sv(O(2)) decreased from 68 +/- 1 to 58 +/- 2% at exhaustion, and both correlated to Pa(CO(2)) (5.5 +/- 0.2 to 3.9 +/- 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O(2) to [glucose + one-half lactate] from 5.6 to 3.8 (P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA V(mean) was increased (P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in Pa(CO(2)).  相似文献   

4.
Although cerebral autoregulation (CA) appears well maintained during mild to moderate intensity dynamic exercise in young subjects, it is presently unclear how aging influences the regulation of cerebral blood flow during physical activity. Therefore, to address this question, middle cerebral artery blood velocity (MCAV), mean arterial pressure (MAP), and the partial pressure of arterial carbon dioxide (Pa(CO(2))) were assessed at rest and during steady-state cycling at 30% and 50% heart rate reserve (HRR) in 9 young (24 +/- 3 yr; mean +/- SD) and 10 older middle-aged (57 +/- 7 yr) subjects. Transfer function analysis between changes in MAP and mean MCAV (MCAV(mean)) in the low-frequency (LF) range were used to assess dynamic CA. No age-group differences were found in Pa(CO(2)) at rest or during cycling. Exercise-induced increases in MAP were greater in older subjects, while changes in MCAV(mean) were similar between groups. The cerebral vascular conductance index (MCAV(mean)/MAP) was not different at rest (young 0.66 +/- 0.04 cm x s(-1) x mmHg(-1) vs. older 0.67 +/- 0.03 cm x s(-1) x mmHg(-1); mean +/- SE) or during 30% HRR cycling between groups but was reduced in older subjects during 50% HRR cycling (young 0.67 +/- 0.03 cm x s(-1) x mmHg(-1) vs. older 0.56 +/- 0.02 cm x s(-1) x mmHg(-1); P < 0.05). LF transfer function gain and phase between MAP and MCAV(mean) was not different between groups at rest (LF gain: young 0.95 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.88 +/- 0.06 cm x s(-1) x mmHg(-1); P > 0.05) or during exercise (LF gain: young 0.80 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.72 +/- 0.07 cm x s(-1) x mmHg(-1) at 50% HRR; P > 0.05). We conclude that despite greater increases in MAP, the regulation of MCAV(mean) is well maintained during dynamic exercise in healthy older middle-aged subjects.  相似文献   

5.
The interaction of sensory stressors with the cardiovascular response to blood loss has not been studied. The cardiovascular response to a stressor (i.e., the defense reaction) includes increased skeletal muscle blood flow and perhaps a reduction in arterial baroreflex function. Arterial pressure maintenance during blood loss requires baroreflex-mediated skeletal muscle vasoconstriction. Therefore, we hypothesized that the defense reaction would limit arterial pressure maintenance during blood loss. Male, New Zealand White rabbits were chronically prepared with arterial and venous catheters and Doppler flow probes. We removed venous blood in conscious rabbits until mean arterial pressure decreased to <40 mmHg. We repeated the experiment with (air) and without (sham) simultaneous exposure to an air jet stressor. Air resulted in a defense reaction (e.g., mean arterial pressure = 94 +/- 1 and 67 +/- 1 mmHg for air and sham, respectively). Contrary to our hypothesis, air increased the blood loss necessary to produce hypotension (19.3 +/- 0.2 vs. 16.9 +/- 0.2 ml/kg for sham). Air did not reduce skeletal muscle vasoconstriction during normotensive hemorrhage. However, air did enhance renal vasoconstriction (97 +/- 3 and 59 +/- 3% of baseline for sham and air, respectively) during the normotensive phase. Thus the defense reaction did not limit but rather extended defense of arterial pressure during hemorrhage.  相似文献   

6.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

7.
Reductions in end-tidal Pco(2) (Pet(CO(2))) during upright posture have been suggested to be the result of hyperventilation and the cause of decreases in cerebral blood flow (CBF). The goal of this study was to determine whether decreases in Pet(CO(2)) reflected decreases in arterial Pco(2) (Pa(CO(2))) and their relation to increases in alveolar ventilation (Va) and decreases in CBF. Fifteen healthy subjects (10 women and 5 men) were subjected to a 10-min head-up tilt (HUT) protocol. Pa(CO(2)), Va, and cerebral flow velocity (CFV) in the middle and anterior cerebral arteries were examined. In 12 subjects who completed the protocol, reductions in Pet(CO(2)) and Pa(CO(2)) (-1.7 +/- 0.5 and -1.1 +/- 0.4 mmHg, P < 0.05) during minute 1 of HUT were associated with a significant increase in Va (+0.7 +/- 0.3 l/min, P < 0.05). However, further decreases in Pa(CO(2)) (-0.5 +/- 0.5 mmHg, P < 0.05), from minute 1 to the last minute of HUT, occurred even though Va did not change significantly (-0.2 +/- 0.3 l/min, P = not significant). Similarly, CFV in the middle and anterior cerebral arteries decreased (-7 +/- 2 and -8 +/- 2%, P < 0.05) from minute 1 to the last minute of HUT, despite minimal changes in Pa(CO(2)). These data suggest that decreases in Pet(CO(2)) and Pa(CO(2)) during upright posture are not solely due to increased Va but could be due to ventilation-perfusion mismatch or a redistribution of CO(2) stores. Furthermore, the reduction in Pa(CO(2)) did not fully explain the decrease in CFV throughout HUT. These data suggest that factors in addition to a reduction in Pa(CO(2)) play a role in the CBF response to orthostatic stress.  相似文献   

8.
End-tidal carbon dioxide tension (Pet(CO(2))) is reduced during an orthostatic challenge, during heat stress, and during a combination of these two conditions. The importance of these changes is dependent on Pet(CO(2)) being an accurate surrogate for arterial carbon dioxide tension (Pa(CO(2))), the latter being the physiologically relevant variable. This study tested the hypothesis that Pet(CO(2)) provides an accurate assessment of Pa(CO(2)) during the aforementioned conditions. Comparisons between these measures were made: 1) after two levels of heat stress (N = 11); 2) during combined heat stress and simulated hemorrhage [via lower-body negative pressure (LBNP), N = 8]; and 3) during an end-tidal clamping protocol to attenuate heat stress-induced reductions in Pet(CO(2)) (N = 7). Pet(CO(2)) and Pa(CO(2)) decreased during heat stress (P < 0.001); however, there was no group difference between Pa(CO(2)) and Pet(CO(2)) (P = 0.36) nor was there a significant interaction between thermal condition and measurement technique (P = 0.06). To verify that this nonsignificant trend for the interaction was not due to a type II error, Pet(CO(2)) and Pa(CO(2)) at three distinct thermal conditions were also compared using paired t-tests, revealing no difference between Pa(CO(2)) and Pet(CO(2)) while normothermic (P = 0.14) and following a 1.0 ± 0.2°C (P = 0.21) and 1.4 ± 0.2°C (P = 0.28) increase in internal temperature. During LBNP while heat stressed, measures of Pet(CO(2)) and Pa(CO(2)) were similar (P = 0.61). Likewise, during the end-tidal carbon dioxide clamping protocol, the increases in Pet(CO(2)) (7.5 ± 2.8 mmHg) and Pa(CO(2)) (6.6 ± 3.4 mmHg) were similar (P = 0.31). These data indicate that mean Pet(CO(2)) reflects mean Pa(CO(2)) during the evaluated conditions.  相似文献   

9.
After an initial compensatory phase, hemorrhage reduces blood pressure due to a widespread reduction of sympathetic nerve activity (decompensatory phase). Here, we investigate the influence of intracerebroventricular naloxone (opioid-receptor antagonist) and morphine (opioid-receptor agonist) on the two phases of hemorrhage, central and peripheral hemodynamics, and release of vasopressin and renin in chronically instrumented conscious sheep. Adult ewes were bled (0.7 ml x kg(-1) x min(-1)) from a jugular vein until mean arterial blood pressure (MAP) reached 50 mmHg. Starting 30 min before and continuing until 60 min after hemorrhage, either artificial cerebrospinal fluid (aCSF), naloxone, or morphine was infused intracerebroventricularly. Naloxone (200 microg/min but not 20 or 2.0 microg/min) significantly increased the hemorrhage volume compared with aCSF (19.5 +/- 3.2 vs. 13.9 +/- 1.1 ml/kg). Naloxone also increased heart rate and cardiac index. Morphine (2.0 microg/min) increased femoral blood flow and decreased hemorrhage volume needed to reduce MAP to 50 mmHg (8.9 +/- 1.5 vs. 13.9 +/- 1.1 ml/kg). The effects of morphine were abolished by naloxone at 20 microg/min. It is concluded that the commencement of the decompensatory phase of hemorrhage in conscious sheep involves endogenous activation of central opioid receptors. The effective dose of morphine most likely activated mu-opioid receptors, but they appear not to have been responsible for initiating decompensation as 1) naloxone only inhibited an endogenous mechanism at a dose much higher than the effective dose of morphine, and 2) the effects of morphine were blocked by a dose of naloxone, which, by itself, did not delay the decompensatory phase.  相似文献   

10.
This study characterized cerebral blood flow (CBF) responses in the middle cerebral artery to PCO2 ranging from 30 to 60 mmHg (1 mmHg = 133.322 Pa) during hypoxia (50 mmHg) and hyperoxia (200 mmHg). Eight subjects (25 +/- 3 years) underwent modified Read rebreathing tests in a background of constant hypoxia or hyperoxia. Mean cerebral blood velocity was measured using a transcranial Doppler ultrasound. Ventilation (VE), end-tidal PCO2 (PETCO2), and mean arterial blood pressure (MAP) data were also collected. CBF increased with rising PETCO2 at two rates, 1.63 +/- 0.21 and 2.75 +/- 0.27 cm x s(-1) x mmHg(-1) (p < 0.05) during hypoxic and 1.69 +/- 0.17 and 2.80 +/- 0.14 cm x s(-1) x mmHg(-1) (p < 0.05) during hyperoxic rebreathing. VE also increased at two rates (5.08 +/- 0.67 and 10.89 +/- 2.55 L min(-1) m mHg(-1) and 3.31 +/- 0.50 and 7.86 +/- 1.43 L x min(-1) x mmHg(-1)) during hypoxic and hyperoxic rebreathing. MAP and PETCO2 increased linearly during both hypoxic and hyperoxic rebreathing. The breakpoint separating the two-component rise in CBF (42.92 +/- 1.29 and 49.00 +/- 1.56 mmHg CO2 during hypoxic and hyperoxic rebreathing) was likely not due to PCO2 or perfusion pressure, since PETCO2 and MAP increased linearly, but it may be related to VE, since both CBF and VE exhibited similar responses, suggesting that the two responses may be regulated by a common neural linkage.  相似文献   

11.
In the conscious rabbit, exposure to an air jet stressor increases arterial pressure, heart rate, and cardiac output. During hemorrhage, air jet exposure extends the blood loss necessary to produce hypotension. It is possible that this enhanced defense of arterial pressure is a general characteristic of stressors. However, some stressors such as oscillation (OSC), although they increase arterial pressure, do not change heart rate or cardiac output. The cardiovascular changes during OSC resemble those seen during freezing behavior. In the present study, our hypothesis was that, unlike air jet, OSC would not affect defense of arterial blood pressure during blood loss. Male New Zealand White rabbits were chronically prepared with arterial and venous catheters and Doppler flow probes. We removed venous blood until mean arterial pressure decreased to 40 mmHg. We repeated the experiment in each rabbit on separate days in the presence and absence (SHAM) of OSC. Compared with SHAM, OSC increased arterial pressure 14 +/- 1 mmHg, central venous pressure 3.3 +/- 0.4 mmHg, and hindquarter blood flow 34 +/- 4% while decreasing mesenteric conductance 32 +/- 3% and not changing heart rate or cardiac output. During normotensive hemorrhage, OSC enhanced hindquarter and renal vasoconstriction. Contrary to our hypothesis, OSC (23.5 +/- 0.6 ml/kg) increased the blood loss necessary to produce hypotension compared with SHAM (16.8 +/- 0.6 ml/kg). In nine rabbits, OSC prevented hypotension even after a blood loss of 27 ml/kg. Thus a stressful stimulus that resulted in cardiovascular changes similar to those seen during freezing behavior enhanced defense of arterial pressure during hemorrhage.  相似文献   

12.
Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide (NO). An inhibitor of NO formation, N omega-nitro-L-arginine (LNA, 100 micrograms/kg i.v.), was given to conscious sheep (n = 6) during normoxia and again in hypocapnic hypoxia (arterial PO2 approximately 38 Torr). Blood samples were obtained from the aorta and sagittal sinus, and cerebral blood flow (CBF) was measured with 15-microns radiolabeled microspheres. During normoxia, LNA elevated (P < 0.05) mean arterial pressure from 82 +/- 3 to 88 +/- 2 (SE) mmHg and cerebral perfusion pressure (CPP) from 72 +/- 3 to 79 +/- 3 mmHg, CBF was unchanged, and cerebral lactate release (CLR) rose temporarily from 0.0 +/- 1.9 to 13.3 +/- 8.7 mumol.min-1 x 100 g-1 (P < 0.05). The glucose-O2 index declined (P < 0.05) from 1.67 +/- 0.16 to 1.03 +/- 0.4 mumol.min-1 x 100 g-1. Hypoxia increased CBF from 59.9 +/- 5.4 to 122.5 +/- 17.5 ml.min-1 x 100 g-1 and the glucose-O2 index from 1.75 +/- 0.43 to 2.49 +/- 0.52 mumol.min-1 x 100 g-1 and decreased brain CO2 output, brain respiratory quotient, and CPP (all P < 0.05), while cerebral O2 uptake, CLR, and CPP were unchanged. LNA given during hypoxia decreased CBF to 77.7 +/- 11.8 ml.min-1 x 100 g-1 and cerebral O2 uptake from 154 +/- 22 to 105.2 +/- 12.4 mumol.min-1 x 100 g-1 and further elevated mean arterial pressure to 98 +/- 2 mmHg (all P < 0.05), CLR was unchanged, and, surprisingly, brain CO2 output and respiratory quotient were reduced dramatically to negative values (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pain is a component of traumatic blood loss, yet little is known about how pain alters the response to blood loss in conscious animals. We evaluated the effects of colorectal distension on the cardiorespiratory response to blood loss in six male and six female conscious, chronically instrumented New Zealand White rabbits. The goal of these experiments was to test the hypotheses that 1) colorectal distension would increase tolerance to hemorrhage (i.e., increase the blood loss required to decrease mean arterial pressure 相似文献   

14.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

15.
Physiological dead space (Vds), end-tidal CO(2) (Pet(CO(2))), and arterial CO(2) (Pa(CO(2))) were measured at 1 and 2.8 ATA in a dry hyperbaric chamber in 10 older (58-74 yr) and 10 younger (19-39 yr) air-breathing subjects during rest and two levels of upright exercise on a cycle ergometer. At pressure, Vd (liters btps) increased from 0.34 +/- 0.09 (mean +/- SD of all subjects for normally distributed data, median +/- interquartile range otherwise) to 0.40 +/- 0.09 (P = 0.0060) at rest, 0.35 +/- 0.13 to 0.45 +/- 0.11 (P = 0.0003) during light exercise, and 0.38 +/- 0.17 to 0.45 +/- 0.13 (P = 0.0497) during heavier exercise. During these conditions, Pa(CO(2)) (Torr) increased from 33.8 +/- 4.2 to 35.7 +/- 4.4 (P = 0.0059), 35.3 +/- 3.2 to 39.4 +/- 3.1 (P < 0.0001), and 29.6 +/- 5.6 to 37.4 +/- 6.5 (P < 0.0001), respectively. During exercise, Pet(CO(2)) overestimated Pa(CO(2)), although the absolute difference was less at pressure. Capnography poorly estimated Pa(CO(2)) during exercise at 1 and 2.8 ATA because of wide variability. Older subjects had higher Vd at 1 ATA but similar changes in Vd, Pa(CO(2)), and Pet(CO(2)) at pressure. These results are consistent with an effect of increased gas density.  相似文献   

16.
Pial arteriolar diameter changes inversely with changes in systemic arterial blood pressure. Such changes are consistent with autoregulatory functions. These responses are reduced by a brief period of hypoxia followed by reoxygenation. By using an open cranial window preparation we assessed the changes in pial arteriolar diameters during blood pressure changes in rats induced by hemorrhage and reinfusion of blood, before and after a brief period of hypoxia. The slopes of the changes in pial arteriolar diameter as a function of mean arterial blood pressure were -0.47 +/- 0.26 micron/mmHg (mean +/- SD; 1 mmHg = 133.3 Pa) before hypoxia and -0.11 +/- 0.23 micron/mmHg after hypoxia in the untreated rats. In ouabain-treated rats, corresponding slopes were -0.42 +/- 0.24 and -0.46 +/- 0.22 micron/mmHg. The observed protective effects of ouabain might be a blockade of the Na-K pump in the sarcolemma of the vascular smooth muscle.  相似文献   

17.
The relationship between cerebral interstitial oxygen tension (Pt(O(2))) and cellular energetics was investigated in mechanically ventilated, anesthetized rats during progressive acute hypoxia to determine whether there is a "critical" brain Pt(O(2)) for maintaining steady-state aerobic metabolism. Cerebral Pt(O(2)), measured by electron paramagnetic resonance oximetry, decreased proportionately to inspired oxygen fraction. (31)P-nuclear magnetic resonance measurements revealed no changes in P(i), phosphocreatine (PCr)/P(i) ratio, or intracellular pH when arterial blood oxygen tension (Pa(O(2))) was reduced from 145.1 +/- 11.7 to 56.5 +/- 4.4 mmHg (means +/- SE). Intracellular acidosis, a sharp rise in P(i), and a decline in the PCr/P(i) ratio developed when Pa(O(2)) was reduced further to 40.7 +/- 2.3 mmHg. The corresponding Pt(O(2)) values were 15.1 +/- 1.8, 8.8 +/- 0.4, and 6.8 +/- 0.3 mmHg. We conclude that over a range of decreasing oxygen tensions, cerebral oxidative metabolism is not sensitive to oxygen concentration. Oxygen becomes a regulatory substrate, however, when Pt(O(2)) is decreased to a critical level.  相似文献   

18.
Chronic hypercapnia is commonly found in patients with severe hypoxic lung disease and is associated with a greater elevation of pulmonary arterial pressure than that due to hypoxia alone. We hypothesized that hypercapnia worsens hypoxic pulmonary hypertension by augmenting pulmonary vascular remodeling and hypoxic pulmonary vasoconstriction (HPV). Rats were exposed to chronic hypoxia [inspiratory O(2) fraction (FI(O(2))) = 0.10], chronic hypercapnia (inspiratory CO(2) fraction = 0.10), hypoxia-hypercapnia (FI(O(2)) = 0.10, inspiratory CO(2) fraction = 0.10), or room air. After 1 and 3 wk of exposure, muscularization of resistance blood vessels and hypoxia-induced hematocrit elevation were significantly inhibited in hypoxia-hypercapnia compared with hypoxia alone (P < 0.001, ANOVA). Right ventricular hypertrophy was reduced in hypoxia-hypercapnia compared with hypoxia at 3 wk (P < 0.001, ANOVA). In isolated, ventilated, blood-perfused lungs, basal pulmonary arterial pressure after 1 wk of exposure to hypoxia (20.1 +/- 1.8 mmHg) was significantly (P < 0.01, ANOVA) elevated compared with control conditions (12.1 +/- 0.1 mmHg) but was not altered in hypoxia-hypercapnia (13.5 +/- 0.9 mmHg) or hypercapnia (11.8 +/- 1.3 mmHg). HPV (FI(O(2)) = 0.03) was attenuated in hypoxia, hypoxia-hypercapnia, and hypercapnia compared with control (P < 0.05, ANOVA). Addition of N(omega)-nitro-L-arginine methyl ester (10(-4) M), which augmented HPV in control, hypoxia, and hypercapnia, significantly reduced HPV in hypoxia-hypercapnia. Chronic hypoxia caused impaired endothelium-dependent relaxation in isolated pulmonary arteries, but coexistent hypercapnia partially protected against this effect. These findings suggest that coexistent hypercapnia inhibits hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy, reduces HPV, and protects against hypoxia-induced impairment of endothelial function.  相似文献   

19.
We tested the hypothesis that integrated sympathetic and cardiovascular reflexes are modulated by systemic CO2 differently in hypoxia than in hyperoxia (n = 7). Subjects performed a CO2 rebreathe protocol that equilibrates CO2 partial pressures between arterial and venous blood and that elevates end tidal CO2 (PET(CO2)) from approximately 40 to approximately 58 mmHg. This test was repeated under conditions where end tidal oxygen levels were clamped at 50 (hypoxia) or 200 (hyperoxia) mmHg. Heart rate (HR; EKG), stroke volume (SV; Doppler ultrasound), blood pressure (MAP; finger plethysmograph), and muscle sympathetic nerve activity (MSNA) were measured continuously during the two protocols. MAP at 40 mmHg PET(CO2) (i.e., the first minute of the rebreathe) was greater during hypoxia versus hyperoxia (P < 0.05). However, the increase in MAP during the rebreathe (P < 0.05) was similar in hypoxia (16 +/- 3 mmHg) and hyperoxia (17 +/- 2 mmHg PET(CO2)). The increase in cardiac output (Q) at 55 mmHg PET(CO2) was greater in hypoxia (2.61 +/- 0.7 L/min) versus hyperoxia (1.09 +/- 0.44 L/min) (P < 0.05). In both conditions the increase in Q was due to elevations in both HR and SV (P < 0.05). Systemic vascular conductance (SVC) increased to similar absolute levels in both conditions but rose earlier during hypoxia (> 50 mmHg PET(CO2)) than hyperoxia (> 55 mmHg). MSNA increased earlier during hypoxic hypercapnia (> 45 mmHg) compared with hyperoxic hypercapnia (> 55 mmHg). Thus, in these conscious humans, the dose-response effect of PET(CO2) on the integrated cardiovascular responses was shifted to the left during hypoxic hypercapnia. The combined data indicate that peripheral chemoreceptors exert important influence over cardiovascular reflex responses to hypercapnia.  相似文献   

20.
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号