首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of Ras signaling by the receptor tyrosine kinase Sevenless plays important roles during retinal patterning and male germline development in Drosophila. Sevenless is orthologous to the vertebrate receptor tyrosine kinase c-ros. Remarkably, vertebrate ligands of c-Ros as well as non-Drosophila orthologs of the Sevenless ligand Bride of sevenless have remained elusive. Using newly available insect genome sequence information, we investigated the evolutionary conservation of the seven transmembrane domain protein gene bride of sevenless. Single orthologs were identified in the genomes of mosquito, flour beetle, and honeybee due to strong sequence conservation in the seven transmembrane domain. The extracellular region, however, is only detectably conserved within but not outside Diptera. Analysis of domain-specific substitution rates demonstrates correlated fast rates of evolutionary change in the extracellular domains of both bride of sevenless and sevenless. The rapid pace of sequence change explains why Sevenless ligands are difficult to detect by sequence similarity in distantly related phyla. Second, the conservation of bride of sevenless in flour beetle and honeybee raises the possibility of conserved Sevenless signaling controlled patterning processes in endopterygote insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
R L Cagan  H Kr?mer  A C Hart  S L Zipursky 《Cell》1992,69(3):393-399
During Drosophila retinal development, the R8 photo-receptor neuron induces a neighboring cell to assume an R7 cell fate through cell contact. This is mediated by the transmembrane protein bride of sevenless (boss) on the surface of the R8 cell, which binds the sevenless tyrosine kinase receptor (sev) on the surface of the R7 precursor cell. The boss protein, which contains a large extracellular domain, seven transmembrane segments, and a C-terminal cytoplasmic domain, has an exceptional structure for a ligand of a receptor tyrosine kinase. Using a panel of antibodies directed to various cytoplasmic and extracellular epitopes, we demonstrate that the entire boss protein from its extreme N-terminus to its extreme C-terminus is internalized by sev-expressing tissue culture cells and by the R7 precursor cell in the developing eye imaginal disc. The receptor-mediated transfer of a transmembrane ligand represents a novel mechanism for protein transfer between developing cells.  相似文献   

3.
4.
Studies on the development of the R7 photoreceptor in the Drosophila eye thus far have identified three genes that specifically affect this cell: sevenless, boss and sina. In each of these mutants the R7 precursor develops instead as the equatorial cone cell (EQC). We have isolated an enhancer trap line, H214, in which beta-galactosidase is primarily expressed in the R7 cell throughout its development. In mutations of sevenless, boss and sina, expression in H214 is initially reduced although still present in the R7 precursor and persists in the EQC into which it develops. The EQC in wild type never expresses lacZ in H214. This result is in contrast to that seen with other enhancer trap lines that display expression in R7, and indicates that some aspect of R7 differentiation is independent of the genetic pathway(s) involving sevenless, boss and sina.  相似文献   

5.
《The Journal of cell biology》1996,133(6):1205-1215
Transmembrane ligands can be internalized across cell boundaries into receptor-expressing cells. In the developing Drosophila eye imaginal disc, the bride of sevenless transmembrane protein (boss) is expressed on the surface of R8 cells. After internalization into neighboring R7 cells, the boss protein accumulates in multivesicular bodies. In a search for genes that affect this cell-type-specific pattern of boss endocytosis, we found that mutations in the hook gene inhibit the accumulation of boss in multivesicular bodies of R7 cells. In addition, hook flies exhibit pleiotropic phenotypes including abnormal bristle morphology and eye degeneration. The wild-type-pattern of boss endocytosis was restored in hook mutants by a genomic rescue fragment containing the hook gene or by a hook cDNA expressed in R7 cells under control of a sevenless (sev) enhancer. The hook gene encodes a novel cytoplasmic protein of 679 amino acids with a central coiled-coil domain of some 200 amino acids. Truncated, epitope-tagged hook proteins coimmunoprecipitated the full-length protein, indicating dimerization mediated by the coiled-coil domain. The hook protein localizes to vesicular structures that are part of the endocytic compartment. The requirement of the hook protein in R7 cells for the accumulation of boss protein in multivesicular bodies, and the localization of the hook protein to endocytic vesicles indicate that the hook gene encodes a novel component of the endocytic compartment that plays an important role in the endocytosis of transmembrane ligands or their transport to multivesicular bodies.  相似文献   

6.
Previous investigations into the evolution of the Drosophila opsin gene family are extended by inter- and intraspecific DNA sequence comparisons of the Rh3 locus in the melanogaster subgroup and D. pseudoobscura. Two separate statistical tests of the neutral-mutation hypothesis suggest that random genetic drift is responsible for virtually all of the observed amino acid replacement substitutions within the melanogaster subgroup. Analyses incorporating the D. pseudoobscura sequences are enigmatic due to the accumulation of multiple substitutions, because the McDonald-Kreitman test is not applicable to species comparisons that approach mutational saturation. However, the data from D. pseudoobscura are not inconsistent with selective neutrality. The ratio of amino acid polymorphisms within species to fixed differences between species imply that these are approximately 31 possible neutral single-step amino-acid-replacement substitutions at this locus. Synonymous substitutions are unevenly distributed among the structural domains of the Rh3 gene. Patterns of synonymous polymorphism are analyzed with respect to GC content and codon bias, and are compared to other loci from the same species.  相似文献   

7.
Molecular evolution of the period gene in Drosophila athabasca   总被引:1,自引:0,他引:1  
We measured nucleotide variability within and between the three semispecies of the Drosophila athabasca complex, at the period (per) gene by using a polymerase chain reaction-based four-cutter restriction- enzyme analysis. The levels of polymorphism varied considerably between the three semispecies. Our results for per, combined with previous data for X-linked allozymes, suggest that the X chromosome in the western- northern semispecies is less variable than expected under an equilibrium-neutral model. Both the pattern of divergence between the semispecies and a cladistic clustering of per haplotypes support the previously hypothesized grouping of eastern A and eastern B as the two most recently diverged semispecies. A 21-bp in-frame segment in the region of per which shares sequence similarity with the neuronal development gene single minded is deleted in all eastern A and eastern B flies examined but is present in all of the western-northern flies and all other published per sequences. Despite these hints that there may be significant differences at the per gene between the semispecies, especially the western-northern group versus the two eastern groups, there is no compelling evidence that per is involved in the mating song differences between the semispecies.   相似文献   

8.
Molecular analysis of the Drosophila nuclear lamin gene   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
In Drosophila melanogaster, the Acp70A gene, which is involved in the postmating reactions of the female, is a single-copy gene. However, in Drosophila subobscura, the gene is duplicated and both copies are transcribed. To study the molecular evolution of the duplication, a 2.1- kb fragment encompassing both copies of the duplication was sequenced for 10 lines of D. subobscura and one line of Drosophila madeirensis. Estimates of the divergence between the two copies of the duplicated region and between the two species studied, D. subobscura and D. madeirensis, revealed that both copies of the Acp70a gene had evolved independently since their duplication. The ratio of nonsynonymous to silent divergence between copies was generally higher than one. The McDonald and Kreitman test revealed an excess of nonsynonymous changes fixed since the duplication and before the split of the D. subobscura and D. madeirensis lineages. These results point to natural selection driving protein evolution after the duplication. Specifically, adaptive evolution appears to have caused the initial differentiation between copies of the N-terminal parts of the proteins, while purifying selection could be responsible for the high conservation of the C- terminal parts.   相似文献   

11.
12.
A Kasravi  M F Walter  S Brand  J M Mason  H Biessmann 《Genetics》1999,152(3):1025-1035
We present here the molecular cloning and characterization of the mutator2 (mu2) gene of Drosophila melanogaster together with further genetic analyses of its mutant phenotype. mu2 functions in oogenesis during meiotic recombination, during repair of radiation damage in mature oocytes, and in proliferating somatic cells, where mu2 mutations cause an increase in somatic recombination. Our data show that mu2 represents a novel component in the processing of double strand breaks (DSBs) in female meiosis. mu2 does not code for a DNA repair enzyme because mu2 mutants are not hypersensitive to DSB-inducing agents. We have mapped and cloned the mu2 gene and rescued the mu2 phenotype by germ-line transformation with genomic DNA fragments containing the mu2 gene. Sequencing its cDNA demonstrates that mu2 encodes a novel 139-kD protein, which is highly basic in the carboxy half and carries three nuclear localization signals and a helix-loop-helix domain. Consistent with the sex-specific mutant phenotype, the gene is expressed in ovaries but not in testes. During oogenesis its RNA is rapidly transported from the nurse cells into the oocyte where it accumulates specifically at the anterior margin. Expression is also prominent in diploid proliferating cells of larval somatic tissues. Our genetic and molecular data are consistent with the model that mu2 encodes a structural component of the oocyte nucleus. The MU2 protein may be involved in controlling chromatin structure and thus may influence the processing of DNA DSBs.  相似文献   

13.
14.
15.
16.
The action of the gene prune (pn) in Drosophila melanogaster   总被引:1,自引:0,他引:1  
  相似文献   

17.
We have cloned 70 kb of DNA from the yellow (y) gene region and analyzed two y null alleles. These alleles are caused by different DNA elements that have inserted into different sites of the y gene coding region.  相似文献   

18.
One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells.  相似文献   

19.
K Basler  B Christen  E Hafen 《Cell》1991,64(6):1069-1081
Cell fate in the developing eye is determined by a cascade of inductive interactions. In this process, the sevenless protein--a receptor tyrosine kinase--is required for the specification of the R7 photoreceptor cell fate. We have constructed a gain-of-function sevenless mutation (SevS11) by overexpressing a truncated sevenless protein in the cells where sevenless is normally expressed. In SevS11 mutant flies, all sevenless-expressing cells initiate neural development. This results in the formation of multiple R7-like photoreceptors per ommatidium. Therefore, sevenless activity appears to be necessary and sufficient for the determination of R7 cell fate. These results illustrate the central role receptor tyrosine kinases can play in the specification of cell fate during development.  相似文献   

20.
Fanconi anaemia (FA) is a rare disease characterized by chromosome instability and cancer susceptibility. With the exception of FANCD2, none of the Fanconi anaemia genes are conserved in evolution, limiting the study of the Fanconi anaemia pathway in genetically tractable models. Here we report the cloning and sequencing of a Drosophila full length cDNA homologous to human FANCD2 (dmFANCD2) as a first step in using Drosophila in Fanconi anaemia research. dmFANCD2 is composed of 14 exons coding for a protein of 1478 aminoacids. Southern blot and in situ hybridization analysis indicated that dmFANCD2 is present at single copy in the Drosophila genome and maps at the chromosomal band 92-F3. Sequence and structural biocomputational analysis indicated that, although the aminoacidic sequence, and specially the N-terminus region, is not highly conserved between humans and flies (23% identity and 43% similarity), both proteins are of the same size, globular and compact, with several transmembrane helixes and related to nuclear membrane proteins. Interestingly, the human ATM phosphorylation site at S222 and the complex-dependent monoubiquitination site at K561 are highly conserved in Drosophila at positions S267 and K595, respectively. The same is true for other putative ATM sites and their aminoacidic environment and for two out of three aminoacid mutations associated with human pathology. These results suggest that the key FANCD2 features have been conserved during over 500 million years of divergent evolution, highlighting their biological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号