首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the rat liver homogenate, maximal protein kinase C activity was found at two calcium concentrations (1.75 and 3.5 mM). Subcellular fractionation of the liver homogenate revealed that the protein kinase C activity requiring 1.75 mM calcium was present only in the cytosolic and particulate subcellular fractions. The protein kinase C activity requiring 3.5 mM calcium concentration was mainly located in the rat liver nuclei preparation. About 19% of the liver homogenate protein kinase C activity requiring 3.5 mM calcium was present in the nuclei. Goat anti-rat brain protein kinase C antibodies revealed a single immunoreactive band at 80-82 kDa in the rat liver nuclear, particulate, or cytosolic fractions. Based on the ratio of plasma membrane marker enzyme activity determined in the nuclear preparation, the purity of the isolated nuclei was ascertained. Rat liver nuclear protein kinase C activity has been partially purified. The purification steps sequentially employed were Triton X-100 extraction of isolated nuclei, DEAE-cellulose chromatography, Phenyl-Superose, and Mono Q (fast protein liquid) chromatography. The final purification step revealed, by silver nitrate staining on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two protein bands at 80 and 66 kDa, respectively. These findings provide definitive data regarding the nuclear location of protein kinase C. The nuclear location of protein kinase C may lead to an understanding of the molecular pathway involved in signal transduction from the plasma membrane to the nucleus.  相似文献   

2.
3.
The nuclear protein kinase NI (NI kinase) was purified from NB-15 mouse neuroblastoma cells by phosphocellulose column and casein affinity column chromatography. The purified NI kinase exhibited (i) an apparent subunit molecular weight of about 37,000, (ii) autophosphorylation, and (iii) insensitivity to inhibition by heparin. When NI kinase was added to heat-treated neuroblastoma nuclei in the presence of [gamma-32P] ATP, two proteins with apparent subunit molecular weights of 11,000 and 10,000 were prominently phosphorylated. Other protein kinases tested including the nuclear protein kinase NII, Type I cAMP-dependent protein kinase, and protein kinase C did not catalyze the phosphorylation of these two proteins. The NI kinase-catalyzed phosphorylation of these two proteins was completely inhibited by 1 mM spermine. In contrast, 10 mM putrescine, 2 mM spermidine, 5 mM arginine, and 10 mM NH4Cl, had no inhibitory effect on this phosphorylation reaction. Our study also indicated that the phosphorylation of the 11,000- and 10,000-dalton proteins occurred in the nuclear matrix fraction but not in heterogeneous nuclear ribonucleoproteins, high mobility group proteins, or histone fractions. We have previously reported that spermine specifically inhibits the endogenous phosphorylation of an 11,000-dalton nuclear protein in various mammalian cell lines (Chen, K. Y., and Verma, R. (1984) Biochem. Biophys. Res. Commun. 118, 710-716). The present study suggests that the 11,000- and 10,000-dalton nuclear proteins may be native substrates of nuclear protein kinase NI and that their phosphorylation can be affected by physiological concentrations of spermine.  相似文献   

4.
A growing body of evidence, accumulated over the past 15 years, has highlighted that the protein kinase C family of isozymes is capable of translocating to the nucleus or is resident within the nucleus. The comprehension of protein kinase C isoform regulation within this organelle is under development. At present, it is emerging that lipid second messengers may play at least two roles in the control of nuclear protein kinase C: on one side they serve as chemical attractants, on the other they directly modulate the activity of specific isoforms. One of the best characterized lipid second messenger that could be involved in the regulation of nuclear PKC activity is DAG. The existence of two separate pools of nuclear DAG suggests that this lipid second messenger might be involved in distinct pathways that lead to different cell responses. Nuclear phosphatidylglycerol, D-3 phosphorylated inositol lipids and nuclear fatty acids are involved in a striking variety of critical biological functions which may act by specific PKC activation. The fine tuning of PKC regulation in cells subjected to proliferating or differentiating stimuli, might prove to be of great interest also for cancer therapy, given the fact that PKC-dependent signaling pathways are increasingly being seen as possible pharmacological target in some forms of neoplastic diseases. In this article, we review the current knowledge about lipid second messengers that are involved in regulating the translocation and/or the activity of different protein kinase C isoforms identified at the nuclear level.  相似文献   

5.
The glycoprotein hormone erythropoietin (Ep) regulates the proliferation and differentiation of erythroid progenitor cells by a signal transduction system which is not well understood. It has recently been reported that prolactin, a mitogen and trophic hormone for liver, will activate a nuclear protein kinase C in hepatocytes. As similarities exist in the actions of Ep and prolactin in their target cells, we tested the hypothesis that Ep could activate protein kinase C in nuclei isolated from erythroid progenitor cells. In a pure population of such nuclei, Ep induced a rapid, time- and dose-dependent increase in phosphorylation of endogenous nuclear substrate which could be blocked by inhibitors of protein kinase C or by antibody to Ep. Other known activators of protein kinase C were also effective in this system. These findings show that Ep may exert its effects by a novel signalling pathway, the activation of a nuclear protein kinase C.  相似文献   

6.
P1, a high mobility group-like nuclear protein, phosphorylated by casein kinase II on multiple sites in situ, has been found to be phosphorylated in vitro by protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II on multiple and mostly distinct thermolytic peptides. All these enzymes phosphorylated predominantly serine residues, with casein kinase II and protein kinase C also labeling threonine residues. Both casein kinase II and second messenger-regulated protein kinases, particularly protein kinase C, might therefore be involved in the physiological regulation of multisite phosphorylation of P1.  相似文献   

7.
Phosphorylation of nucleolin by a nucleolar type NII protein kinase   总被引:13,自引:0,他引:13  
Nucleolin [C23 or 100 kilodaltons (kDa)] is the major nucleolar phosphorylated protein in exponentially growing Chinese hamster ovary cells. A nucleolar cyclic nucleotide independent protein kinase copurified with nucleolin in a complex which could be dissociated by hydroxyapatite chromatography. The kinase was stimulated by spermine and inhibited by heparin and presented most of the properties of nuclear casein kinase NII. Kinetic analyses showed the apparent Km value for nucleolin (7 X 10(-4) mg/mL) to be lower than those for other casein kinase II substrates such as nuclear protein HMG 14 (0.15 mg/mL), topoisomerase I (0.025 mg/mL), or topoisomerase II (0.04 mg/mL). Similarly, Vmax values were higher for nucleolin than for other substrates. Nucleolin thus appears to be a natural preferential substrate of nucleolar casein kinase NII. The kinase phosphorylated nucleolin in vitro at serine residues in a 29-kDa CNBr fragment located near the amino terminus of the molecule. The enzyme labeled typical casein kinase II sites. These sites were found predominantly in two highly acidic tryptic fragments designated A (residues 21-49) and C (residues 180-221) which contained serines having at least two acidic residues on their carboxyl-terminal sides. These results demonstrate the existence in the nucleolus of a type of NII protein kinase that uses a protein involved in ribosome assembly as preferential substrate.  相似文献   

8.
Specific effects of cadmium on nuclear protein kinase C activity were found with 3T3/10T1/2 mouse fibroblast and rat liver nuclei. Treatment of the mouse fibroblasts in culture with 12-O-tetradecanoylphorbol-13-acetate resulted in the stimulation of nuclear protein kinase C activity in a "fixed" pool which is defined by its resistance to chelator extraction, whereas the chelator extractable enzyme activity, defined as the "labile" pool was unaffected. Cadmium was found to potentiate the effect of the phorbol ester, directed specifically to nuclei, since the particulate protein kinase C activity was not changed under similar treatment. In a reconstituted system consisting of rat liver nuclei and rat brain protein kinase C, cadmium stimulated the binding of the enzyme to a 105-kDa nuclear protein. The binding of a 105-kDa protein to protein kinase C is attributed strictly due to the cadmium effect, whereas a 50-kDa protein binding to protein kinase C was only enhanced by cadmium. We propose a mechanistic model, where cadmium substitutes zinc in the regulatory domain of protein kinase C rendering the putative protein-protein binding site exposed.  相似文献   

9.
The rate of energy-dependent nucleoside triphosphatase (NTPase)-mediated nucleocytoplasmic translocation of poly(A)-containing mRNA [poly(A)+mRNA] across the nuclear envelope is thought to be regulated by poly(A)-sensitive phosphorylation and dephosphorylation of nuclear-envelope protein. Studying the phosphorylation-related inhibition of the NTPase, we found that phosphorylation of one polypeptide of rat liver envelopes by endogenous NI- and NII-like protein kinase was particularly sensitive to poly(A). This polypeptide (106 kDa) was also phosphorylated by nuclear-envelope-bound Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C). Activation of kinase C by tumour-promoting phorbol esters resulted in inhibition of nuclear-envelope NTPase activity and in a concomitant decrease of mRNA (actin) efflux rate from isolated rat liver nuclei. Protein kinase C, but not nuclear envelope NI-like or NII-like protein kinase, was found to be solubilized from the envelope by Triton X-100, whereas the presumable poly(A)-binding site [the 106 kDa polypeptide, representing the putative carrier for poly(A)+mRNA transport] remained bound to this structure. RNA efflux from detergent-treated nuclei lost its susceptibility to phorbol esters. Addition of purified protein kinase C to these nuclei restored the effect of the tumour promoters. Protein kinase C was found to bind also to isolated rat liver nuclear matrices in the absence but not in the presence of ATP. The NII-like nuclear-envelope protein kinase co-purified together with the 106 kDa polypeptide which specifically binds to poly(A) in an ATP-labile linkage.  相似文献   

10.
Both bryostatin 1 and 4 beta-phorbol 12,13-dibutyrate (PBt2) activate Ca2+- and phospholipid-dependent protein kinase (protein kinase C) at the plasma membrane in HL-60 cells (Kraft, A. S., Baker, V. V., and May, W. S. (1987) Oncogene 1, 91-100). However, whereas PBt2 causes HL-60 cells to cease dividing and differentiate, bryostatin 1 antagonizes this effect and allows cells to continue proliferating. To test whether these divergent effects could be due to the differential activation of protein kinase C at the nuclear level, the phosphorylation of nuclear envelope polypeptides was evaluated in cells treated with either bryostatin 1 or PBt2. Bryostatin 1, either alone or in combination with PBt2, but not PBt2 alone, mediates rapid and specific phosphorylation of several nuclear envelope polypeptides. A major target for bryostatin-induced phosphorylation is the major nuclear envelope polypeptide lamin B (Mr = 67,000, pI 6.0). In vitro studies combining purified protein kinase C and HL-60 cell nuclear envelopes demonstrate that bryostatin activates protein kinase C to phosphorylate lamin B, whereas PBt2 does so only weakly, suggesting selective activation of this enzyme toward this substrate. Comparative phosphopeptide and phosphoamino acid analyses demonstrate that bryostatin induces phosphorylation of identical serine sites on lamin B both in whole cells and in vitro. Treatment of whole cells with bryostatin, but not PBt2, leads to specific translocation of activated protein kinase C to the nuclear envelope. Since phosphorylation of lamin B is known to be involved in nuclear lamina depolymerization at the time of mitosis, it is possible that bryostatin-activated protein kinase C activity is involved in this process. Finally, specific activation of protein kinase C at the nuclear membrane could explain, at least in part, the divergent effects of bryostatin 1 and PBt2 on HL-60 cell growth.  相似文献   

11.
The aim of this research is to study the influence of protein kinase C delta on the nuclear phospholipids metabolism. Murine and human melanoma cells, in which overexpression of protein kinase delta was induced, were used. After purification of the nuclei, the phosphatidylcholine-dependent phospholipase C, sphingomyelin-synthase, and sphingomyelinase activities were measured. The results showed that the nuclear sphingomyelin-synthase activity increased and sphingomyelinase activity decreased in the protein kinase C delta overexpressive cells with respect to the controls. As a consequence, the ceramide pool decreased and diacylglycerol pool increased; this effect was not due to the phosphatidylcholine-dependent phospholipase C activity that did not change. The inhibition of sphingomyelinase could be due to protein kinase C delta as well as to existence of a sort of nuclear self-regulation between sphingomyelin-synthase and sphingomyelinase. The possible role of nuclear sphingomyelin-synthase in cell proliferation is discussed.  相似文献   

12.
Angiotensin II (ang II) induces c-fos gene expression in part via a protein kinase C-dependent mechanism in cultured vascular smooth muscle cells (VSMC). However, little is known about the mechanisms by which protein kinase C regulates nuclear functions. We examined the ability of ang II to phosphorylate nuclear lamina proteins in VSMC and the possibility that protein kinase C is involved in these putative phosphorylation events. Ang II stimulated the phosphorylation of Triton X-100- and high salt-insoluble nuclear envelope proteins with molecular weights of 70,000, 67,000, and 60,000. These proteins were identified as lamins A, B, and C, respectively, based on their mobilities on two-dimensional gel electrophoresis and interaction with antibodies to lamins as detected by immunoblot analyses. After a 2-min delay, phosphorylation levels of lamins increased, peaked at 20-30 min, and were sustained for at least 60 min after ang II stimulation. The threshold, half-maximal, and maximal concentrations of ang II which induced phosphorylation of lamins were 0.1, 0.5-1, and 100 nM, respectively. Phorbol 12-myristate 13-acetate also induced these reactions, whereas ionomycin did not. Down-regulation of protein kinase C by prolonged treatment with phorbol 12,13-dibutyrate attenuated ang II-induced phosphorylation of lamins. In vitro phosphorylation of nuclear envelope proteins by protein kinase C revealed that lamins served as substrates for this enzyme. These results indicate that ang II induces phosphorylation of lamins in cultured VSMC and suggest that protein kinase C is either directly or indirectly involved in these reactions. The results raise the possibility that phosphorylation of nuclear proteins is one of the important steps by which the protein kinase C signaling pathway regulates agonist-induced nuclear events.  相似文献   

13.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes, the structures that contain heterogeneous nuclear RNA and its associated proteins, constitute one of the most abundant components of the eukaryotic nucleus. hnRNPs appear to play important roles in the processing, and possibly also in the transport, of mRNA. hnRNP C proteins (C1, M(r) of 41,000; C2, M(r) of 43,000 [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis]) are among the most abundant pre-mRNA-binding proteins, and they bind tenaciously to sequences relevant to pre-mRNA processing, including the polypyrimidine stretch of introns (when it is uridine rich). C proteins are found in the nucleus during the interphase, but during mitosis they disperse throughout the cell. They have been shown previously to be phosphorylated in vivo, and they can be phosphorylated in vitro by a casein kinase type II. We have identified and partially purified at least two additional C protein kinases. One of these, termed Cs kinase, caused a distinct mobility shift of C proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These phosphorylated C proteins, the Cs proteins, were the prevalent forms of C proteins during mitosis, and Cs kinase activity was also increased in extracts prepared from mitotic cells. Thus, hnRNP C proteins undergo cell cycle-dependent phosphorylation by a cell cycle-regulated protein kinase. Cs kinase activity appears to be distinct from the well-characterized mitosis-specific histone H1 kinase activity. Several additional hnRNP proteins are also phosphorylated during mitosis and are thus also potential substrates for Cs kinase. These novel phosphorylations may be important in regulating the assembly and disassembly of hnRNP complexes and in the function or cellular localization of RNA-binding proteins.  相似文献   

14.
As a step towards the elucidation of the role played by nuclear polyphosphoinositides, we have investigated the effect of exogenous calcium free inositol (1,4,5)-trisphosphate on the in vitro phosphorylation of proteins in nuclei prepared from Swiss 3T3 cells treated with bombesin and insulin-like growth factor I. When present in combination with phosphatidylserine, inositol (1,4,5)-trisphosphate enhanced the phosphorylation of two nuclear proteins, Mr 21,000 and 31,000, as well as of exogenous histone H1, to the same extent as a combination of phosphatidylserine and diacylglycerol. Inositol (1,4,5)-trisphosphate alone had no effect. This stimulation could be abolished by the protein kinase C inhibitor sphingosine and by EGTA, while could be restored by a combination of phosphatidylserine and exogenous Ca+(+) ions. These results raise the possibility that inositol (1,4,5)-trisphosphate is capable of liberating Ca+(+) ions from a nuclear store thus stimulating protein kinase C activity.  相似文献   

15.
Protein kinase C, a multigene family of phospholipid-dependent and diacylglycerol-activated Ser/Thr protein kinases, is a key component in many signal transduction pathways. The kinase activity was thought to be essential for a plethora of biological processes attributed to these enzymes. Here we show that at least one protein kinase C function, the induction of apoptosis by protein kinase C delta, is independent of the kinase activity. Stimulation of green fluorescent protein-protein kinase C delta fusion protein with phorbol ester or diacylglycerol led to its redistribution within seconds after the stimulus. Membrane blebbing, an early hallmark of apoptosis, was visible as early as 20 min after stimulation, and nuclear condensation was visible after 3-5 h. Apoptosis could be inhibited by expression of Bcl-2 but not by specific protein kinase C inhibitors. In addition, a kinase-negative mutant of protein kinase C delta also induced apoptosis to the same extent as the wild type enzyme. Apoptosis was confined to the protein kinase C delta-overexpressing cells. Stimulation of overexpressed protein kinase C epsilon did not result in increased apoptosis. Our results indicate that distinct protein kinase C isozymes induce apoptosis in vascular smooth muscle cells. More importantly, they show that some protein kinase C effector functions are independent of the catalytic activity.  相似文献   

16.
17.
18.
Protein kinase D (PKD)/protein kinase C mu is a serine/threonine protein kinase activated by growth factors, antigen-receptor engagement, and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires protein kinase C (PKC) activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular distribution of PKD was analyzed in live cells by imaging fluorescent protein-tagged PKD and in fixed cells by immunocytochemistry. We found that PKD shuttled between the cytoplasm and the nucleus in both fibroblasts and epithelial cells. Cell stimulation with mitogenic GPCR agonists that activate PKD induced a transient nuclear accumulation of PKD that was prevented by inhibiting PKC activity. The nuclear import of PKD requires its cys2 domain in conjunction with a nuclear import receptor, while its nuclear export requires its pleckstrin homology domain and a competent Crm1-dependent nuclear export pathway. This study thus characterizes the regulated nuclear transport of a signaling molecule in response to mitogenic GPCR agonists and positions PKD as a serine kinase whose kinase activity and intracellular localization is coordinated by PKC.  相似文献   

19.
The effect of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, on the nuclear binding of [3H]dexamethasone and on the phosphorylation of glucocorticoid receptor was studied in rat liver slices to ascertain the role of protein kinase C in the expression of glucocorticoid action. H-7 reduces the nuclear binding of [3H]dexamethasone in rat liver slices. It does not affect the extent of phosphorylation of glucocorticoid receptor both in the absence or in the presence of glucocorticoid. These findings indicate that protein kinase C may be involved in the nuclear binding of glucocorticoid receptor but does not directly influence the receptor phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号