首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In its natural environment, the plant cuticle, which is composed of the biopolymer cutin and a mixture of surface and embedded cuticular waxes, experiences a wide variety of temperatures and hydration states. Consequently, a complete understanding of cuticular function requires study of its thermal and mechanical properties as a function of hydration. Herein, we report the results of a comprehensive 13C nuclear magnetic resonance (NMR) relaxation study of hydrated tomato fruit cuticle. Cross-polarization and direct-polarization experiments serve to measure the solid-like and liquid-like components, respectively, of hydrated cuticle. Localized, high-frequency motions are probed by T1(C) spin relaxation measurements, whereas T1rho(H) and T1rho(C) experiments reflect low-frequency, lower amplitude polymer-chain motions. In addition, variable-temperature measurements of T1(C) and T1rho(C) for dry tomato cuticles are used to evaluate the impact of temperature stress. Results of these experiments are interpreted in terms of changes occurring in individual polymer motions of the cutin/wax components of tomato cuticle and in the interaction of these components within intact cuticle, both of which are expected to influence the functional integrity of this protective plant covering.  相似文献   

2.
The orientation dependence of the low frequency NMR relaxation time, T(1rho), of protons in aligned phospholipid bilayers was measured using 13C cross polarisation and direct proton experiments. The contribution of intra- and inter-molecular interactions to proton T(1rho) was determined by using dimyristoyl phosphatidylcholine (DMPC) with one hydrocarbon chain deuterated and dispersed in perdeuterated DMPC. The results indicated that intramolecular motions on the kHz timescale were the major cause of T(1rho) relaxation in phospholipid bilayers.  相似文献   

3.
Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T1 rho) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid beta-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T1 rho and cross relaxation times. In addition, breakage of the beta-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal.  相似文献   

4.
Solid-state NMR techniques were used to study two different types of spider silk from two Australian orb-web spider species, Nephila edulis and Argiope keyserlingi. A comparison of (13)C-T(1) and (1)H-T(1rho) solid-state NMR relaxation data of the Ala Calpha, Ala Cbeta, Gly Calpha, and carbonyl resonances revealed subtle differences between dragline and cocoon silk. (13)C-T(1rho) and (1)H-T(1) relaxation experiments showed significant differences between silks of the two species with possible structural variations. Comparison of our data to previous (13)C-T(1) relaxation studies of silk from Nephila clavipes (A. Simmons et al., Macromolecules, 1994, Vol. 27, pp. 5235-5237) also supports the finding that differences in molecular mobility of dragline silk exist between species. Interspecies differences in silk structure may be due to different functional properties. Relaxation studies performed on wet (supercontracted) and dry silks showed that the degree of hydration affects relaxation properties, and hence changes in molecular mobility are correlated with functional properties of silk.  相似文献   

5.
Natural abundance solid-state 13C-NMR spin-lattice relaxation experiments in the laboratory (T1) and off-resonance rotating (T(1rho)) frames were applied for qualitative comparison of the internal molecular dynamics of barstar, hen egg white lysozyme and bacteriophage T4 lysozyme in both the microcrystalline and the rehydrated (water content is 50% of the protein mass) lyophilized states. The microcrystalline state of proteins provides a better spectral resolution; however, less is known about the local structure and dynamics in the different states. We found by visual comparison of both T1 and T(1rho) relaxation decays of various resonance bands of the CPMAS spectra that within the ns-mus range of correlation times there is no appreciable difference in the internal dynamics between rehydrated lyophilized and crystalline states for all three proteins tested. This suggests that the internal conformational dynamics depends weakly if at all on inter-protein interactions in the solid state. Hence, physical properties of globular proteins in a fully hydrated solid state seem to be similar to those in solution. This result at least partly removes concerns about biological relevance of studies of globular proteins in the solid state.  相似文献   

6.
High-resolution solid-state (13)C NMR spectra are presented for samples of alpha-elastin prepared from the aorta of normal and copper-deficient pigs. Chemical shifts of the various peaks indicate that both the normal and undercross-linked peptides have similar overall structures. However, (13)C T(1), (13)C T(1 rho), and (1)H T(1 rho) measurements indicate that the alpha-elastin peptides obtained from the abnormal elastic fibers samples exhibit altered mobilities, particularly in their side chains. Results from spectra taken with a range of contact times and from dipolar dephasing experiments are consistent with conclusions reached with the relaxation measurements. Namely, the loss of function associated with the undercross-linked sample is correlated to a small but measurable difference in relative mobility.  相似文献   

7.
Non-invasive techniques for quantifying early biochemical and biomechanical changes in articular cartilage may provide a means of more precisely assessing osteoarthritis (OA) progression. The goals of this study were to determine the relationship between T1rho magnetic resonance (MR) imaging relaxation times and changes in cartilage composition, cartilage mechanical properties, and synovial fluid biomarker levels and to demonstrate the application of T1rho imaging to evaluate cartilage composition in human subjects in vivo. Femoral condyles and synovial fluid were harvested from healthy and OA porcine knee joints. Sagittal T1rho relaxation MR images of the condyles were acquired. OA regions of OA joints exhibited an increase in T1rho relaxation times as compared to non-OA regions. Furthermore in these regions, cartilage sGAG content and aggregate modulus decreased, while percent degraded collagen and water content increased. In OA joints, synovial fluid concentrations of sGAG decreased and C2C concentrations increased compared to healthy joints. T1rho relaxation times were negatively correlated with cartilage and synovial fluid sGAG concentrations and aggregate modulus and positively correlated with water content and permeability. Additionally, we demonstrated the application of these in vitro findings to the study of human subjects. Specifically, we demonstrated that walking results in decreased T1rho relaxation times, consistent with water exudation and an increase in proteoglycan concentration with in vivo loading. Together, these findings demonstrate that cartilage MR imaging and synovial fluid biomarkers provide powerful non-invasive tools for characterizing changes in the biochemical and biomechanical environments of the joint.  相似文献   

8.
T1 relaxation in the rotating frame (T1rho) is a sensitive magnetic resonance imaging (MRI) contrast for acute brain insults. Biophysical mechanisms affecting T1rho relaxation rate (R1rho) and R1rho dispersion (dependency of R1rho on the spin-lock field) were studied in protein solutions by varying their chemical environment and pH in native, heat-denatured, and glutaraldehyde (GA) cross-linked samples. Low pH strongly reduced R1rho in heat-denatured phantoms displaying proton resonances from a number of side-chain chemical groups in high-resolution 1H NMR spectra. At pH of 5.5, R1rho dispersion was completely absent. In contrast, in the GA-treated phantoms with very few NMR visible side chain groups, acidic pH showed virtually no effect on R1rho. The present data point to a crucial role of proton exchange on R1rho and R1rho dispersion in immobilized protein solution mimicking tissue relaxation properties.  相似文献   

9.
Hoogstraten CG  Wank JR  Pardi A 《Biochemistry》2000,39(32):9951-9958
Conformational dynamics are an important property of ribozymes and other RNA molecules but there is currently only limited information on the relationship between dynamics and RNA function. A recent structural study of the lead-dependent ribozyme, known as the leadzyme, showed significant dynamics at the active site and indicated that a structural rearrangement is required for the reaction to proceed from the ground to the transition state. In this work, microsecond-to-millisecond dynamics of the leadzyme are probed by analysis of the power dependence of (13)C NMR relaxation times in the rotating frame (T(1)(rho)). These results revealed a wide range of conformational dynamics for various residues in the leadzyme. For residue A25 in the active site, the power dependence of T(1)(rho) yielded an exchange lifetime similar to that previously measured by line-shape analysis, and provides an important calibration of this T(1)(rho) methodology for probing the dynamics of macromolecules. Strong evidence was also found for a previously suggested dynamic network of hydrogen bonds stabilizing the GAAA tetraloop motif. Within the active site of the leadzyme, internal motions are observed on a wide variety of time scales, suggesting a complex landscape of accessible states, and potential correlations between observed motions and catalytic function are discussed. These results demonstrate that the power dependence of (13)C T(1)(rho) relaxation times provides a valuable method for probing dynamics in nucleic acids.  相似文献   

10.
R W Fisher  T L James 《Biochemistry》1978,17(7):1177-1183
Measurements of the proton NMR spin--lattice relaxation time in the rotating frame (T 1rho) have permitted the explicit determination of the lateral diffusion coefficient of phospholipid molecules in the lamellar mesophase of dipalmitoylphosphatidylcholine at temperatures above the phase-transition temperature. The experimentally observed temperature and frequency dependence of T 1rho for the dipalmitoylphosphatidylcholine protons suggest that intermolecular dipole--dipole relaxation contributions are important. Proton T 1rho experiments involving dilution with deuterated dipalmitoylphosphatidylcholine support the premise that intermolecular dipolar interactions are significant and, concomitantly, that lateral diffusion is the motion modulating that interaction. The lateral diffusion coefficient is determined directly from the dependence of the rotating frame spin--lattice relaxation rate (1/T 1rho) on the strength of the applied radiofrequency field in the spin-locking experiment. A series of experiments with varying concentrations of dipalmitoylphosphatidylcholine in the lamellar mesophase indicates that the lateral diffusion coefficient varies as a function of phospholipid concentration.  相似文献   

11.
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.  相似文献   

12.
The effects of accelerated aging of wheat seeds on structural and dynamic properties of dry and hydrated (ca 10 wt % H(2)O) flour at a molecular level were investigated by several high and low resolution solid-state NMR techniques. Identification and characterization of domains with different mobility was performed by (13)C direct excitation (DE) and cross-polarization (CP) magic angle spinning (MAS), as well as by (1)H static and MAS experiments. (1)H spin-lattice relaxation times (T(1) and T(1)(rho)) measurements were carried out to investigate molecular motions in different frequency ranges. Experimental data show that the main components of flour (starch and gluten proteins) are in a glassy phase, whereas the mobile fraction is constituted by lipids and, in hydrated samples, absorbed water. A lower proportion of rigid domains, as well as an increased dynamics of all flour components are observed after both seeds aging and flour hydration. Linear average dimensions between 20 and 200 A are estimated for water domains in hydrated samples.  相似文献   

13.
Low-frequency motion in membranes. The effect of cholesterol and proteins   总被引:3,自引:0,他引:3  
Nuclear magnetic resonance (NMR) relaxation techniques have been used to study the effect of lipid-protein interactions on the dynamics of membrane lipids. Proton enhanced (PE) 13C-NMR measurements are reported for the methylene chain resonances in red blood cell membranes and their lipid extracts. For comparison similar measurements have been made of phospholipid dispersions containing cholesterol and the polypeptide gramicidin A+. It is found that the spin-lattice relaxation time in the rotating reference frame (T1 rho) is far more sensitive to protein, gramicidin A+ or cholesterol content than is the laboratory frame relaxation time (T1). Based on this data it is concluded that the addition of the second component to a lipid bilayer produces a low-frequency motion in the region of 10(5) to 10(7) Hz within the membrane lipid. The T1 rho for the superimposed resonance peaks derived from all parts of the phospholipid chain are all influenced in the same manner suggesting that the low frequency motion involves collective movements of large segments of the hydrocarbon chain. Because of the molecular co-operativity implied in this type of motion and the greater sensitivity of T1 rho to the effects of lipid-protein interactions generally, it is proposed that these low-frequency perturbations are felt at a greater distance from the protein than those at higher frequencies which dominate T1.  相似文献   

14.
Kojima C  Ulyanov NB  Kainosho M  James TL 《Biochemistry》2001,40(24):7239-7246
In DNA duplexes, pyrimidine-purine steps are believed to be flexible or conformationally unstable. Indeed, several DNA crystal structures exhibit a multitude of conformations for CpA*TpG steps. The question arises of whether this structural flexibility is accompanied by dynamical flexibility, i.e., a question pertaining to the energy barrier between conformations. Except for TpA steps, slow motions on the microsecond-to-millisecond time scale have not been detected in duplexes until now. In the present study, such slow motion was investigated by 1H, 13C, and 15N NMR relaxation measurements on a DNA decamer d(CATTTGCATC)*d(GATGCAAATG). The DNA decamer was enriched with 15% 13C and 98% 15N isotopes for each adenosine and guanosine residue. Three lines of evidence support the notion of slow motion in the CAA*TTG moiety. Analysis of (15)N relaxation showed that the order parameter, S2, of guanosine imino NH groups was about 0.8, similar to that of CH groups for this oligomer. The strong temperature dependence of guanosine NH S2 in the CAA*TTG sequence indicated the presence of a large-amplitude motion. Signals of adenosine H8 protons in the CAA*TTG sequence were broadened in 2D 1H NOESY spectra, which also suggested the existence of slow motion. As well as being smaller than for other adenine residues, the 1H T2 values exhibited a magnetic field strength dependence for all adenosine H8 signals in the ATTTG*CAAAT region, suggesting slow motions more pronounced at the first adenosine in the CAA*TTG sequence but extending over the CAAAT*ATTTG region. This phenomenon was further examined by the pulse field strength dependence of the 1H, 13C, and 15N T1rho values. 1H and 13C T1rho values showed a pulse field strength dependence, but 15N T1rho did not. Assuming a two-site exchange process, an exchange time constant of 20-300 micros was estimated for the first adenosine in the CAA sequence. The exact nature of this motion remains unknown.  相似文献   

15.
Pang Y  Buck M  Zuiderweg ER 《Biochemistry》2002,41(8):2655-2666
The nano-pico second backbone dynamics of the ribonuclease binase, homologous to barnase, is investigated with (15)N, (13)C NMR relaxation at 11.74 and 18.78 T and with a 1.1 ns molecular dynamics simulation. The data are compared with the temperature factors reported for the X-ray structure of this enzyme. The molecular dynamics and X-ray data correspond well and predict motions in the loops 56-61 and 99-104 that contain residues that specifically recognize substrate and are catalytic (His101), respectively. In contrast, the (15)N relaxation data indicate that these loops are mostly ordered at the nano-pico second time scale. Nano-pico second motions in the recognition loop 56-61 are evident from (13)CO-(13)C cross relaxation data, but the mobility of the catalytic loop 99-104 is not detected by (13)CO cross relaxation either. From the results of this and previous work [Wang, L., Pang, Y., Holder, T., Brender, J. R., Kurochkin, A., and Zuiderweg, E. R. P. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 7684-7689], the following dynamical characterization of the active site area of binase emerges: a beta sheet, rigid at all probed time scales, supports the catalytic residue Glu 72. Both substrate-encapsulating loops are mobile on both fast and slow time scales, but the fast motions of the loop which contains the other catalytic residue, His 101, as predicted by B-factors and computational molecular dynamics is not detected by NMR relaxation. This work strongly argues for the use of several measures in the study of protein dynamics.  相似文献   

16.
Quantitative T1rho magnetic resonance imaging (MRI) can potentially help identify early-stage osteoarthritis (OA) by non-invasively assessing proteoglycan concentration in articular cartilage. T1rho relaxation times are negatively correlated with proteoglycan concentration. Cartilage compresses in response to load, resulting in water exudation, a relative increase in proteoglycan concentration, and a decrease in the corresponding T1rho relaxation times. To date, there is limited information on changes in cartilage composition resulting from daily activity. Therefore, the objective of this study was to quantify changes in tibial cartilage T1rho relaxation times in healthy human subjects following activities of daily living. It was hypothesized that water exudation throughout the day would lead to decreased T1rho relaxation times. Subjects underwent MR imaging in the morning and afternoon on the same day and were free to go about their normal activities between scans. Our findings confirmed the hypothesis that tibial cartilage T1rho relaxation times significantly decreased (by 7%) over the course of the day with loading, which is indicative of a relative increase in proteoglycan concentration. Additionally, baseline T1rho values varied with position within the cartilage, supporting a need for site-specific measurements of T1rho relaxation times. Understanding how loading alters the proteoglycan concentration in healthy cartilage may hold clinical significance pertaining to cartilage homeostasis and potentially help to elucidate a mechanism for OA development. These results also indicate that future studies using T1rho relaxation times as an indicator of cartilage health should control the loading history prior to image acquisition to ensure the appropriate interpretation of the data.  相似文献   

17.
13C-NMR relaxation experiments (T(1), T(2), T(1)(rho), and NOE) were performed on selectively enriched residues in two peptides, one hydrophobic staple alpha-helix-forming peptide GFSKAELAKARAAKRGGY and one beta-hairpin-forming peptide RGITVNGKTYGR, in water and in water/trifluoroethanol (TFE). Exchange contributions, R(ex), to spin-spin relaxation rates for (13)C(alpha) and (13)C(beta) groups were derived and were ascribed to be mainly due to peptide folding-unfolding. To evaluate the exchange time, tau(ex), from R(ex), the chemical shift difference between folded and unfolded states, Deltadelta, and the populations of these states, p(i), were determined from the temperature dependence of (13)C chemical shifts. For both peptides, values for tau(ex) fell in the 1 micros to 10 micros range. Under conditions where the peptides are most folded (water/TFE, 5 degrees C), tau(ex) values for all residues in each respective peptide were essentially the same, supporting the presence of a global folding-unfolding exchange process. Rounded-up average tau(ex) values were 4 micros for the helix peptide and 9 micros for the hairpin peptide. This 2-3-fold difference in exchange times between helix and hairpin peptides is consistent with that observed for folding-unfolding of other small peptides.  相似文献   

18.
The phospholipids protons of native and reconstituted sarcoplasmic reticulum (SR) membrane vesicles yield well-resolved nuclear magnetic resonance (NMR) spectra. Resonance area measurements, guided by the line shape theory of Bloom and co-workers, imply that we are observing a large fraction of the lipid intensity and that the protein does not appear to reduce the percent of the signal that is well resolved. We have measured the spin-lattice (T1) and spin-spin (T2) relaxation rates of the choline, methylene, and terminal methyl protons at 360 MHz and the spin-lattice relaxation rate in the rotating frame (T1 rho) at 100 MHz. Both the T1 and T2 relaxation rates are single exponential processes for all of the resonances if the residual water proton signal is thoroughly eliminated by selective saturation. The T1 and T2 relaxation rates increase as the protein concentration increases, and T2 rate decrease with increasing temperature. This implies that the protein is reducing both high frequency (e.g., trans-gauche methylene isomerizations) and low frequency (e.g., large amplitude, chain wagging) lipid motions, from the center of the bilayer to the surface. It is possible that spin diffusion contributes to the effect of protein on lipid T1's although some of the protein-induced T1 change is due to motional effects. The T2 relaxation times are observed to be near 1 ms for the membranes with highest protein concentration and approximately 10 ms for the lipids devoid of protein. This result, combined with the observation that the T2 rates are monophasic, suggests that at least two lipid environments exist in the presence of protein, and that the lipids are exchanging between these environments at a rate greater than 1/T2 or 10(3) s-1. The choline resonance yields single exponential T1 rho relaxation in the presence and absence of protein, whereas the other resonances measured exhibit biexponential relaxation. Protein significantly increases the single T1 rho relaxation rate of the choline peak while primarily increasing the T1 rho relaxation rate of the more slowly relaxing component of the methylene and methyl resonances.  相似文献   

19.
This work describes a carbon and proton solid-state NMR study of the hydration of a high molecular weight wheat glutenin subunit, 1Dx5. The effect of the presence of disulfide bonds on the hydration behavior of the subunit is investigated by a comparison of the unalkylated and alkylated forms of the protein. Hydration induces partial plasticization of the protein so that some segments become more mobile than others. The 13C cross-polarization and magic-angle spinning (MAS) spectra of the samples in the dry state and at two hydration levels (approximately 40 and approximately 65% D2O) were used to monitor the protein fraction resisting plasticization (trains). Conversely, 13C single pulse excitation and 1H-MAS experiments were used to gain information on the more plasticized segments (loops). The molecular motion of the two protein dynamic populations was further characterized by 13C T1 and 1H T(1rho), T2, and T1 relaxation times. The results suggest that hydration leads to the formation of a network held by a cooperative action of hydrogen bonded glutamines and some hydrophobic interactions. The looser protein segments are suggested to be glycine- and glutamine-rich segments. The primary structure is therefore expected to significantly determine the proportion of trains and loops in the network. The presence of disulfide bonds was observed to promote easier plasticization of the protein and the formation of a more mobile network, probably involving a higher number of loops and/or larger loops.  相似文献   

20.
The study of internal mobility in enzymes is of considerable importance for the understanding of their catalytic function, which cannot be adequately described as a property of a rigid protein. [13C]NMR spectroscopy permits simultaneous and selective observation of spectral lines from carbon atoms in many different residues in the enzyme with the chemical shift and relaxation parameters sensitive to structure, conformation and local motion. The changes in internal mobility in bovine carbonic anhydrase B (carbonate hydrolase, EC 4.2.1.1) in the native form and at various stages of denaturation are studied. Measurements of the relaxation parameters (T1, T1 rho) and of the NOE of 13C nuclei in the native protein showed that the extensive beta-sheet together with groups in the active center has a considerable internal librational mobility with tau G about 10(-11) s. This librational mobility is fairly uniform for all the alpha-carbons in the native enzyme. The use of a semiempirical modification of the motional theory proposed by Woessner allows to use simultaneously all the relaxation parameters measured in order to determine reliable values of the various correlation times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号