首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorophyll fluorescence measurements were performed on attached leaves of wheat plants (Triticum aestivum L. cv. Nandu) that were exposed to ambient air and to air supplemented with 80 and 120nmol mol-1 ozone. Decreases in the “current photochemical capacity” were observed that were dependent on both the ozone concentration and duration of exposure. Electron paramagnetic resonance (EPR) spectra on freeze-dried samples from the same batches of plants showed the presence of an unidentified stable free radical, whose spectra had similarities to that of the ubisemiquinone radical. The intensity of this radical signal increased with the duration of ozone exposure in leaves that received an additional 120nmol mol-1 ozone. In contrast, with exposure to air with 80nmol mol-1 added ozone, there was little if any change in free radical signal intensity over the 4 week period of the experiment. The increase in intensity of the EPR signal occurred later than the chlorophyll fluorescence changes, which suggests that it is associated with permanent leaf damage.  相似文献   

2.
Stable free radicals in ozone-damaged wheat leaves   总被引:2,自引:0,他引:2  
Chlorophyll fluorescence measurements were performed on attached leaves of wheat plants (Triticum aestivum L. cv. Nandu) that were exposed to ambient air and to air supplemented with 80 and 120nmol mol-1 ozone. Decreases in the “current photochemical capacity” were observed that were dependent on both the ozone concentration and duration of exposure. Electron paramagnetic resonance (EPR) spectra on freeze-dried samples from the same batches of plants showed the presence of an unidentified stable free radical, whose spectra had similarities to that of the ubisemiquinone radical. The intensity of this radical signal increased with the duration of ozone exposure in leaves that received an additional 120nmol mol-1 ozone. In contrast, with exposure to air with 80nmol mol-1 added ozone, there was little if any change in free radical signal intensity over the 4 week period of the experiment. The increase in intensity of the EPR signal occurred later than the chlorophyll fluorescence changes, which suggests that it is associated with permanent leaf damage.  相似文献   

3.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

4.
Acyl lipids and pigments were analyzed in young plants of garden pea, spring wheat and spinach exposed to < 5 or 65 nl l?1 ozone 12 h per day for 6 days. In one set of experiments, the plants were exposed to 14CO2 for 2 h 3 days prior to ozone exposure. The plants responded differently to the moderately enhanced level of ozone used Spinach was not at all sensitive while in both pea and wheat, leaves of different ages differed in ozone sensitivity. In pea, ozone sensitivity increased with leaf age. In the second and third oldest leaves, the amounts of galactolipids per leaf area and the proportions of 18:3 of the total lipid extract and of phosphatidylglycerol decreased. In the second oldest leaf, ozone also caused a decreased proportion of 18:3 of monogalactosyldiacylglycerol. In the fourth oldest leaf, lipid composition and galactolipid unsaturation was unaffected, but ozone caused decreased leaf expansion resulting in increased acyl lipid content per leaf area. In both the first and second leaves of wheat, ozone fumigation caused a marked decrease in the content of monogalactosyldiacylglycerol and in the first leaf, the contents of phosphatidylcholine and phosphatidylethanolamine increased. The proportion of 18:3 in phosphatidylcholine was larger in ozone-fumigated than in control plants, while the reverse applied for phosphatidylglycerol. In the oldest sampled leaves of pea and wheat, ozone caused an increase in the radioactivity associated with β-carotene, indicating increased turnover. Thus, while spinach was unaffected, in both pea and wheat ozone caused a decrease in the proportion of chloroplast membrane lipids to non-chloroplast membrane lipids in older leaves while younger leaves were less sensitive.  相似文献   

5.
Stomatal response to changes in temperature and humidity was studied in wheat (Triticum aestivum L.) cv. Iren’ cultivated under conditions of high water supply and cv. Kazakhstanskaya 10, which is relatively drought tolerant. Experiments were performed under both laboratory and field conditions. It was demonstrated that stomata of cv. Kazakhstanskaya 10 plants closed rapidly with reducing humidity (the response of the first type), whereas, in cv. Iren’, this response was less expressed and, under conditions of a high water content in soil, stomatal conductance could increase in response to reduced humidity (the response of the second type). At an increased stomatal conductance and transpiration, water content in cv. Iren’ plants was maintained due to the increase in hydraulic conductance and water inflow from the roots. A possible role of the first-type response (rapid stomata closure) for growth maintenance under drought and of the second-type response (a parallel increase in the stomatal and hydraulic conductance) for providing of rapid growth and high productivity under sufficient water supply is discussed. A possibility to use the type of stomata behavior for cultivar assessment is considered.  相似文献   

6.
Leaf discs of the ozone tolerant tobacco (Nicotiana tabacum L.) cv. Bel B and of the ozone sensitive cv. Bel W3, were exposed to an acute ozone fumigation (300 ppb) for 3 h. We measured ozone uptake by leaves and physiological characteristics before, during and after the treatment, in order to determine if the different O3 sensitivity was correlated to the leaf uptake. In the tolerant cv. Bel B, O3 uptake was high during the first 2 h of ozone exposure and then decreased. In the sensitive cv. Bel W3, the rate of O3 uptake decreased constantly during ozone fumigation. The estimated cumulative uptake over the treatment time was higher (200 ± 30 μmol m–2) in Bel B than in Bel W3 (130 ± 12 μmol m–2). Thus, the ozone sensitivity was not correlated with ozone uptake. Stomatal conductance and photosynthesis were significantly inhibited during the fumigation in both cultivars. However, these reductions were strong and irreversible in the cv. Bel W3, while in the cv. Bel B both parameters recovered in the post-fumigation period. Thus, ozone tolerance may be related to a sustained capacity of recovery. There was no linear correlation between ozone uptake and photosynthesis reduction, but a threshold of ozone uptake was found after which photosynthesis was substantially impaired. This threshold may or may not be reached under the same external ozone level, indicating that the AOT40 may not be a sufficiently accurate index for the detection of ozone damage in plants.  相似文献   

7.
The combined effects of ozone (O3) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal‐filtered air, CF, and non‐filtered air +40 ppb, E‐O3) and soil water stress (well‐watered, WW, and mild drought, MD, one‐third irrigation) for 96 days. Consistent with light‐saturated photosynthesis (Asat), intercellular CO2 concentration (Ci) and chlorophyll content, isoprene emission depended on drought, O3, leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (?40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th–15th from the apex) than in upper leaves (6th–8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up‐scaled to the entire‐plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E‐O3. Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.  相似文献   

8.
In spinach (Spinacia oleracea Hybrid 102 [New World seeds]) and wheat (Triticum aestivum L. cv Gabo) leaves, O2 uptake rates in the dark were faster after the plants had been allowed to photosynthesize for a period of several hours. Alternative path activity also increased following a period of photosynthesis in these leaves. No such effects were observed with isolated mitochondria. In spinach and wheat leaves, the level of fructose plus glucose decreased during a period of darkness. In pea (Pisum sativum cv Alaska) leaves, the level of these sugars did not vary significantly during the day, and respiratory rates were also constant. In slices cut from wheat leaves harvested at the end of the night, addition of sugars increased the rate of respiration and engaged the previously latent alternative oxidase. In pea leaves, O2 uptake in the first few minutes following illumination was faster than that observed before illumination, but declined during the next 15 to 20 minutes. Adding the alternative oxidase inhibitor salicylhydroxamic acid, or imposing high bicarbonate concentrations during the period of photosynthesis, prevented the rise in O2 uptake rate during the immediate post illumination period.

We conclude that the level of respiratory substrate in leaves determines their rate of O2 uptake, and the degree to which the alternative path contributes to that O2 uptake.

  相似文献   

9.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2003,41(3):399-405
A field experiment was conducted to investigate the carbon (C) and nitrogen (N) balance in relation to grain formation and leaf senescence in two different senescent types of maize (Zea mays L.), one stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55). In comparison with Hokkou 55, P3845 had a higher N concentration (Nc) in the leaves and a higher specific N absorption rate by roots (SARN), which indicated that a large amount of N was supplied to the leaves from the roots during maturation. This resulted in a higher photosynthetic rate, which supports saccharide distribution to roots. Thus, stay-green plants maintained a more balanced C and N metabolism between shoots and roots. Moreover, the coefficients of the relationship between the relative growth rate (RGR) and Nc, and between the photon-saturated photo-synthetic rate (P sat) and Nc were lower in P3845. The P sat per unit Nc in leaves was lower in the stay-green cultivars, which indicated that high yield was attained by longer green area duration and not by a high P sat per unit Nc in the leaf. Consequently, a high Psat caused a high leaf senescence rate because C and N compounds will translocate actively from the leaves.  相似文献   

10.
To assess photosynthesis and yield components’ response of field-grown wheat to increasing ozone (O3) concentration (based on diurnal pattern of ambient O3) in China, winter wheat (Triticum aestivum L.) cv. Jia 403 was planted in open top chambers and exposed to three different O3 concentrations: O3-free air (CF), ambient air (NF), and O3-free air with additional O3 (CF+O3). Diurnal changes of gas exchange and net photosynthetic rate (P N) in response to photosynthetic photon flux density (PPFD) of flag leaves were measured at the filling grain stage, and yield components were investigated at harvest. High O3 concentration altered diurnal course of gas exchange [P N, stomatal conductance (g s), and intercellular CO2 concentration (C i)] and decreased significantly their values except for C i. Apparent quantum yield (AQY), compensation irradiance (CI), and saturation irradiance (SI) were significantly decreased, suggesting photosynthetic capacity was also altered, characterized as reduced photon-saturated photosynthetic rate (P Nmax). The limit of photosynthetic activity was probably dominated by non-stomatal factors in combination with stomatal closure. The significant reduction in yield was observed in CF+O3 treatment as a result of a marked decrease in the ear length and the number of grains per ear, and a significant increase in the number of infertile florets per ear. Even though similar responses were also observed in plants exposed to ambient O3 concentration, no statistical difference was observed at current ambient O3 concentration in China.  相似文献   

11.
Seedlings of spring barley, meadow fescue, and winter rape were fumigated with 180 μg kg−1 of ozone for 12 d, and effect of O3 on photosynthesis and cell membrane permeability of fumigated plants was determined. Electrolyte leakage and chlorophyll fluorescence were measured after 6, 9, and 12 d of fumigation, while net photosynthetic rate (P N) and stomatal conductance (g s) were measured 9 d after the start of ozone exposure. O3 treatment did not change membrane permeability in fescue and barley leaves, while in rape a significant decrease in ion leakage was noted within the whole experiment. O3 did not change the photochemical efficiency of photosystem 2 (PS2), i.e., Fv/Fm, and the initial fluorescence (F0). The values of half-rise time (t1/2) from F0 to maximal fluorescence (Fm) decreased in fescue and barley after 6 and 9 d of fumigation. P N decreased significantly in ozonated plants, in the three species. The greatest decrease in P N was observed in ozonated barley plants (17 % of the control). The ozone-induced decrease in P N was due to the closure of stomata. Rape was more resistant to ozone than fescue or barley. Apparently, the rape plants show a large adaptation to ozone and prevent loss of membrane integrity leading to ion leakage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Light-saturated net leaf photosynthesis (Asat), CO2 response curves (A/Ci), current photochemical capacity (Fv/Fm) and pigment contents were measured in leaves of Populus nigra (Clone T107) which had been exposed to ozone stress in open-top chambers for the entire growth period. Surprisingly, not only elevated (ao+, i.e. ambient air + 50 mm3 m?3 ozone) but also ambient (aa) ozone concentrations led to a reduction in Asat, in comparison with leaves exposed to air containing almost no ozone (cf?, i.e. charcoal filtered ambient air). The very small change in leaf conductance (g1) indicated that the decrease in Asat was not due to stomatal limitation. This finding was supported by the fact that, a decrease in carboxylation efficiency (CE) correlated with a loss in Asat. In comparison to cf? leaves, aa leaves showed no change in current photochemical capacity (Fv/Fm) throughout the whole experiment. However, a marked decline in Fv/Fm in ao+ leaves was observed at a time when Asat and CE were already decreased by about 45% and 60% respectively. As the chlorophyll b content of leaves is known to correlate with the amount of LHC and PSII centres, it was used to normalize fluorescence parameters in relation to PSII centres present. The normalized values for Fm and F0 increased with the dosage of ozone in ao+ leaves but not in aa leaves, indicating a change of the pigment content of PSII in the former, but not in the latter. These data led to the conclusion that ozone interacts primarily with components of the Calvin cycle, which results in a decrease in Asat, with subsequent feedback on the current photochemical capacity of PSII centres.  相似文献   

13.
Transport of CO2 in leaves was investigated by combining a 2-D, microscale CO2 transport model with photosynthesis kinetics in wheat (Triticum aestivum L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO2. The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO2 levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO2 concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO2 diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf''s actual microstructure.  相似文献   

14.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

15.
16.
A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light.  相似文献   

17.
Srivastava  A.C.  Khanna  Y.P.  Meena  R.C.  Pal  Madan  Sengupta  U.K. 《Photosynthetica》2002,40(2):221-225
The diurnal changes in leaf net photosynthetic rate (P N) and sugar and nitrogen contents in wheat [Triticum aestivum (L.) cv. HD 2285] and mungbean [Vigna radiata (L.) Wilczek cv. PS 16] were analysed under ambient, AC [350±25 µmol mol–1] and elevated, EC [600±50 µmol mol–1] CO2 concentrations. In both mungbean and wheat P N of AC- and EC-grown plants compared at the same CO2 concentration showed that P N was higher under EC. However, increased P N in EC-plants declined in the afternoon and approached P N of AC-plants. Depression in P N, however, was less in mungbean compared with the large depression in wheat. Greater down regulation of P N in wheat was associated with the accumulation of large amount of sugars and low nitrogen content in wheat leaves. Mungbean leaves accumulated mostly starch under EC and the difference in N content in AC- and EC-plants was relatively less than in wheat.  相似文献   

18.
19.
Studies were undertaken to examine the relationship between water deficit effects on photosynthesis and the extent of protoplast volume reduction which occurs in leaves at low water potential (Ψw). This relationship was monitored in two cultivars (`Condor' and `Capelle Desprez') of cultivated wheat (Triticum aestivum) that differed in sensitivity to drought, and in a wild relative of cultivated wheat (Triticum kotschyi) that has been previously found to be `drought resistant.' When subjected to periods of water stress, Condor and T. kotschyi plants underwent osmotic adjustment; Capelle plants did not. Photosynthetic capacity was maintained to different extents in the three genotypes as leaf Ψw declined during stress; Capelle plants were most severely affected. Calculations of internal leaf [CO2] and stomatal conductance from gas exchange measurements indicated that differences in photosynthetic inhibition at low Ψw among the genotypes were primarily due to nonstomatal effects. The extent of protoplast volume reduction that occurred in leaves at low Ψw was also found to be different in the three genotypes; maintenance of protoplast volume and photosynthetic capacity in stressed plants of the genotypes appeared to be correlated. When the extent of water stress-induced inhibition of photosynthesis was plotted as a function of declining protoplast volume, this relationship appeared identical for the three genotypes. It was concluded that there is a correlative association between protoplast volume and photosynthetic capacity in leaves of wheat plants subjected to periods of water stress.  相似文献   

20.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号