首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica.  相似文献   

3.
4.
Brassica oleracea is a strictly self-incompatible (SI) plant, but rapid-cycling B. oleracea ‘TO1000DH3’ is self-compatible (SC). Self-incompatibility in Brassicaceae is controlled by multiple alleles of the S-locus. Three S-locus genes, S-locus glycoprotein (SLG), S-locus receptor kinase (SRK) and S-locus protein 11 or S-locus cysteine-rich (SP11/SCR), have been reported to date, all of which are classified into class I and II. In this study, we investigated the molecular mechanism behind alterations of SI to SC in rapid-cycling B. olerace ‘TO1000DH3’. Class I SRK were identified by genomic DNA PCR and PCR-RFLP analysis using SRK specific markers and found to be homozygous. Cloning and sequencing of class I SRK revealed a normal kinase domain without any S-domain/transmembrane domain. Moreover, S-locus sequencing analysis revealed only an SLG sequence, but no SP11/SCR. Expression analysis showed no SRK expression in the stigma, although other genes involved in the SI recognition reaction (SLG, MLPK, ARC1, THL) were found to have normal expression in the stigma. Taken together, the above results suggest that structural aberrations such as deletion of the SI recognition genes may be responsible for the breakdown of SI in rapid-cycling B. oleracea ‘TO1000DH3’.  相似文献   

5.
Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica. Received: 15 April 1997 / Accepted: 13 June 1997  相似文献   

6.
The S locus, which controls the self-incompatibility response in Brassica, has been shown to contain at least two genes. SLG encodes a secreted S locus glycoprotein whilst SRK encodes a putative S locus receptor kinase. SRK has been shown potentially to encode a functional kinase and genetic evidence indicates that this gene is essential for the self-incompatibility response. Here the characterization of the SRK and SLG genes of a Brassica line homozygous for the S3 haplotype is described. A 120 kDa glycoprotein was identified in stigmas and several lines of evidence indicated that this protein is encoded by the SRK3 gene. First, the 120 kDa glycoprotein was recognized by antibodies raised against peptides based on the SRK3 gene sequence. Secondly, this protein is polymorphic and, in an F2 population segregating for the S3 haplotype, was expressed only in plants possessing the S3 haplotype. Thirdly, the 120 kDa protein was expressed specifically in stigmas. Finally, the 120 kDa protein was only extracted from stigmas in the presence of detergent indicating that it is anchored in the membrane. SRK has been predicted to encode a transmembrane glycoprotein based on the deduced amino acid sequence. Located on the membrane, SRK is in a position to interface between an extracellular recognition event between pollen and pistil and an intracellular signal transduction pathway which initiates the self-incompatibility response.  相似文献   

7.
8.
9.
10.
Self-incompatibility (SI) is reported to play a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In Brassica, two S-locus genes expressed in the stigma, S-locus glycoprotein (SLG) gene and S-locus receptor kinase (SRK) gene, and one expressed in the pollen, S-locus protein 11 (SP11) gene, were linked as an S haplotype. In order to analyze the evolutionary relationships of S haplotypes in Brassica, a total of 39 SRK, 37 SLG, and 58 SP11 sequences of Brassica oleracea, Brassica rapa and Brassica napus were aligned. Two phylogenetic trees with similar pattern were constructed based on the nucleotide sequences of SRK/SLG and SP11, respectively. Class I and class II alleles were clustered into two distinct groups, and alleles from different species, including all the interspecific pairs of S haplotypes, were closely related to each other. The S-locus genes identified in B. napus were intermingled in phylogenetic trees. All these observations showed that class I and class II S haplotypes diverged ahead of the species differentiation in Brassica. The evolution and the genetic diversity of S haplotypes in Brassica were discussed. Moreover, the relationships between S haplotypes and SI phenotypes in Brassica, especially in B. napus, were also discussed.  相似文献   

11.
12.
In Brassica, self-incompatibility genes SLG (for S-locus glycoprotein) and SRK (for S-receptor kinase) are located in the S-locus complex region with several other S-linked genes. The S locus is a highly polymorphic region: polymorphism has been observed not only in sequences of SLG and SRK but also in the location of the S-locus genes. In order to compare the physical location of the S-locus genes in various S haplotypes, we used six class-I S haplotypes of B. rapa and seven class-I S haplotypes of B. oleracea in this study. DNA gel blot analysis using pulsed-field gel electrophoresis (PFGE) showed that the physical distances between SLG and SRK in B. rapa are significantly shorter than those in B. oleracea and that the sizes of MluI and BssHII fragments harboring SLG and SRK are less variable within B. rapa than within B. oleracea. We concluded that several large genomic fragments might have been inserted into the S-locus region of B. oleracea after allelic differentiation of S-locus genes. Received: 20 September 1999 / Accepted: 8 October 1999  相似文献   

13.
14.
A genomic library from an S 29/S 29 self-incompatible genotype of Brassica oleracea was screened with a probe carrying part of the catalytic domain of a Brassica S-receptor kinase (SRK)-like gene. Six positive phage clones with varying hybridisation intensities (K1 to K6) were purified and characterised. A 650–700 by region corresponding to the probe was excised from each clone and sequenced. DNA and predicted protein sequence comparisons based on a multiple alignment identified K5 as a pseudogene, whereas the others could encode functional proteins. K3 was found to have lost an intron from its genomic sequence. The six genes display different degrees of sequence similarity and form two distinct clusters in a dendrogram. The 98% similarity between K4 and K6, which extends across intron sequences, suggests that these might be very recently diverged alleles or daughters of a duplication. In addition, K2 showed a comparably high similarity to the probe. Clones K1, K3 and K5 cross-hybridised with an SLG 29 cDNA probe, indicating the presence of upstream receptor domains homologous to the Brassica SLG gene. This suggests that the previously reported S sequence complexity may be ascribed to a large receptor kinase gene family.  相似文献   

15.
Brassica napus is an amphidiploid plant which is self-compatible even though it is derived from hybridisation of the self-incompatible species B. oleracea and B. campestris. Experiments were undertaken to establish if S-locus glycoprotein (SLG) genes exist in B. napus and whether these are expressed as in self-incompatible Brassica species. Two different stigma-specific cDNA sequences homologous to SLG genes were obtained from the B. napus cultivar Westar. One of these sequences, SLG WS1, displayed highest homology to class I SLG alleles, whereas the other, SLG WS2, showed greatest homology to class II SLG genes. Both were expressed at high levels in Westar stigmas following a developmental pattern typical of SLG genes in the self-incompatible diploids. We infer that they represent the endogenous SLG genes at the two homoeologous S-loci. The occurrence of normally expressed SLG genes and its relevance to the self-compatible phenotype of B. napus is discussed.  相似文献   

16.
Summary An SLG gene derived from the S-locus and encoding and S-locus-specific glycoprotein of Brassica campestris L. was introduced via Agrobacterium-mediated transformation into B. oleracea L. A self-incompatible hybrid and another with partial self-compatibility were used as recipients. The transgenic plants were altered in their pollen-stigma interaction and were fully compatible upon self-pollination. Reciprocal crosses between the transgenic plants and untransformed control plants indicated that the stigma reaction was changed in one recipient strain while the pollen reaction was altered in the other. Due to interspecific incompatibility, we could not demonstrate whether or not the introduced SLG gene confers a new allelic specificity in the transgenic plants. Our results show that the introduced SLG gene perturbs the self-incompatibility phenotype of stigma and pollen.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号