首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Apoptosis linked to oxidative stress has been implicated in pancreatitis. We investigated whether NADPH oxidase mediates apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. We report here that cerulein treatment resulted in the activation of NADPH oxidase, as determined by ROS production, translocation of cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and interaction between NADPH oxidase subunits. Cerulein induced Ca(2+) oscillation, the expression of apoptotic genes p53 and bax, and apoptotic indices (DNA fragmentation, TUNEL staining, caspase 3 activity, decrease in cell viability) in AR42J cells. Treatment with a Ca(2+) chelator, BAPTA-AM, or transfection with antisense oligonucleotides for NADPH oxidase subunits p22(phox) and p 47(phox) inhibited cerulein-induced ROS production, translocation of NADPH oxidase cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and the expression of apoptotic genes and apoptotic indices, as compared to the cells without treatment and those transfected with the corresponding sense oligonucleotides. These results indicate that NADPH oxidase may mediate ROS-induced apoptosis in pancreatic acinar cells in a Ca(2+)-dependent manner.  相似文献   

3.
Angiotensin II stimulates NADPH oxidase activity in vascular cells. However, it is not fully understood whether angiotensin II, which plays an important role in heart failure, stimulates NADPH oxidase activation and expression in cardiac myocytes. Previous studies have shown that angiotensin II induces myocyte apoptosis, but whether the change is mediated via NADPH oxidase remains to be elucidated. In this study we proposed to determine whether angiotensin II stimulated NADPH oxidase activation and NADPH oxidase subunit p47-phox expression in H9C2 cardiac muscle cells. If so, we would determine whether the NADPH oxidase inhibitor apocynin prevented angiotensin II-induced apoptosis. The results showed that angiotensin II increased NADPH oxidase activity, p47-phox protein and mRNA expression, intracellular reactive oxygen species, and apoptosis in H9C2 cells. Angiotensin II elevated p38 mitogen-activated protein kinase (MAPK) activity, decreased Bcl-2 protein, and increased Bax protein and caspase-3 activity. Apocynin treatment inhibited angiotensin II-induced NADPH oxidase activation and increases in p47-phox expression, intracellular reactive oxygen species, and apoptosis. The effect of apocynin on apoptosis was associated with reduced p38 MAPK activity, increased Bcl-2 protein, and decreased Bax protein and caspase-3 activity. These results suggest that angiotensin II-induced apoptosis is mediated via NADPH oxidase activation probably through p38 MAPK activation, a decrease in Bcl-2 protein, and caspase activation.  相似文献   

4.
Adiponectin, produced predominantly by differentiating adipocytes, is a protein hormone with antidiabetic and immunosuppressive properties. Here, we report evidence that treatment with globular adiponectin (gAd) induces apoptosis in murine macrophage-like RAW264 cells through the generation of reactive oxygen and/or nitrogen species (ROS/RNS). Treatment with gAd induced apoptosis and enhanced the activities of caspase-3 and -9, but not caspase-8. The gAd stimulation increased ROS generation and significantly reduced the ratio of NADPH to total NADP. Pretreatment with diphenyleneiodonium or apocynin reduced ROS and apoptosis in gAd-treated cells. In addition, transfection with p47(phox)- or gp91(phox)-specific small interfering RNA (siRNA) partially reduced ROS and apoptosis in response to gAd treatment. These results suggest that the administration of gAd induces apoptosis after ROS generation involving activation of NADPH oxidases. The gAd stimulation increased the release of NO into the culture medium, the activity of nitric oxide synthase (NOS), and the expression of inducible NOS (iNOS) mRNA in RAW264 cells. l-NAME reduced gAd-induced apoptotic cell death. In addition, transfection with an iNOS-specific siRNA markedly reduced the generation of NO and the population of apoptotic cells. Taken together, these results demonstrate that the gAd-induced apoptotic process in RAW264 cells involves ROS and RNS, which are generated by NADPH oxidases and iNOS, respectively.  相似文献   

5.
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.  相似文献   

6.
7.
Low-level arsenite treatment of porcine aortic endothelial cells (PAEC) stimulated superoxide accumulation that was attenuated by inhibitors of NAD(P)H oxidase. To demonstrate whether arsenite stimulated NADPH oxidase, intact PAEC were treated with arsenite for up to 2 h and membrane fractions were prepared to measure NADPH oxidase activity. Arsenite (5 microM) stimulated a twofold increase in activity by 1 h, which was inhibited by the oxidase inhibitor diphenyleneiodonium chloride. Direct treatment of isolated membranes with arsenite had no effect. Analysis of NADPH oxidase components revealed that p67(phox) localized exclusively to membranes of both control and treated cells. In contrast, cytosolic Rac1 translocated to the membrane fractions of cells treated with arsenite or angiotensin II but not with tumor necrosis factor. Immunodepletion of p67(phox) blocked oxidase activity stimulated by all three compounds. However, depleting Rac1 inhibited responses only to arsenite and angiotensin II. These data demonstrate that stimulus-specific activation of NADPH oxidase in endothelial cells was the source of reactive oxygen in endothelial cells after noncytotoxic arsenite exposure.  相似文献   

8.
9.
Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.  相似文献   

10.
11.
12.
Although glial cells play a major role in the pathogenesis of many neurological diseases by exacerbating neuronal and non-neuronal cell death, the mechanisms involved are unclear. We examined the effects of microglia-(MCM) or astrocyte-(ACM) conditioned media obtained by chemical ischemia on the neuronal injury in SH-SY5Y cells. Chemical ischemia was induced by the treatment with NaN3 and 2-deoxy-d-glucose for 2 h. MCM-treated SH-SY5Y cells showed reduced the viability, increased caspase-3 activity, decreased Bcl-2/Bax ratio, and increased cytochrome c release, increased inflammatory cytokines, and increased reactive oxygen species (ROS) generation. MCM also increased gp91phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which was inhibited by NADPH oxidase inhibitor, apocynin, and gp91phox siRNA. However, ACM did not show any significant changes. The results suggest that microglia activated by ischemic insult may increase reactive oxygen species generation via activation of gp91phox NADPH oxidase, resulting in neuronal injury.  相似文献   

13.
14.
CD95 ligand (CD95L) triggers a rapid formation of reactive oxygen species (ROS) as an upstream event of CD95 activation and apoptosis induction in rat hepatocytes. This ROS response was sensitive to inhibition by diphenyleneiodonium, apocynin, and neopterin, suggestive of an involvement of NADPH oxidases. In line with this, hepatocytes expressed mRNAs not only of the phagocyte gp91phox (Nox 2), but also of the homologs Nox 1 and 4 and Duox 1 and 2, as well as the regulatory subunit p47phox. gp91phox (Nox 2) and p47phox were also identified at the protein level in rat hepatocytes. CD95L induced within 1 min ceramide formation and serine phosphorylation of p47phox, which was sensitive to inhibitors of sphingomyelinase and protein kinase Czeta (PKCzeta). These inhibitors and p47phox protein knockdown inhibited the early CD95L-induced ROS response, suggesting that ceramide and PKCzeta are upstream events of the CD95L-induced Nox/Duox activation. CD95L also induced rapid activation of the Src family kinase Yes, being followed by activation of c-Src, Fyn, and c-Jun-N-terminal kinases (JNK). Only Yes and JNK activation were sensitive to N-acetylcysteine, inhibitors of NADPH oxidase, PKCzeta, or sphingomyelinase, indicating that the CD95L-induced ROS response is upstream of Yes and JNK but not of Fyn and c-Src activation. Activated Yes rapidly associated with the epidermal growth factor receptor (EGFR), which became phosphorylated at Tyr845 and Tyr1173 but not at Tyr1045. Activated EGFR then triggered an AG1478-sensitive CD95-tyrosine phosphorylation, which was a signal for membrane targeting of the EGFR/CD95 complex, subsequent recruitment of Fas-associated death domain and caspase 8, and apoptosis induction. All of these events were significantly blunted by inhibitors of sphingomyelinase, PKCzeta, NADPH oxidases, Yes, or EGFR-tyrosine kinase activity and after protein knockdown of either p47phox, Yes, or EGFR. The data suggest that CD95L-induced apoptosis involves a sphingomyelinase- and PKCzeta-dependent activation of NADPH oxidase isoforms, which is required for Yes/EGFR/CD95 interactions as upstream events of CD95 activation.  相似文献   

15.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

16.
Recent studies have demonstrated that reactive oxygen species (ROS) mediate myocardial ischemia-reperfusion (I/R) and angiogenesis via the mitogen-activated protein kinases and the serine-threonine kinase Akt/protein kinase B pathways. NADPH oxidases are major sources of ROS in endothelial cells and cardiomyocytes. In the present study, we investigated the role of NADPH oxidase-derived ROS in hypoxia-reoxygenation (H/R)-induced Akt and ERK1/2 activation and angiogenesis using porcine coronary artery endothelial cells (PCAECs) and a mouse myocardial I/R model. Our data demonstrate that exposure of PCAECs to hypoxia for 2 h followed by 1 h of reoxygenation significantly increased ROS formation. Pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI, 10 microM) and apocynin (Apo, 200 and 600 microM), significantly attenuated H/R-induced ROS formation. Furthermore, exposure of PCAECs to H/R caused a significant increase in Akt and ERK1/2 activation. Exposure of PCAEC spheroids and mouse aortic rings to H/R significantly increased endothelial spheroid sprouting and vessel outgrowth, whereas pharmacological inhibition of NADPH oxidase or genetic deletion of the NADPH oxidase subunit, p47(phox) (p47(phox-/-)), significantly suppressed these changes. With the use of a mouse I/R model, our data further show that the increases in myocardial Akt and ERK1/2 activation and vascular endothelial growth factor (VEGF) expression were markedly blunted in the p47(phox-/-) mouse subjected to myocardial I/R compared with the wild-type mouse. Our findings underscore the important role of NADPH oxidase and its subunit p47(phox) in modulating Akt and ERK1/2 activation, angiogenic growth factor expression, and angiogenesis in myocardium undergoing I/R.  相似文献   

17.
Hyperoxia causes cell injury and death associated with reactive oxygen species formation and inflammatory responses. Recent studies show that hyperoxia-induced cell death involves apoptosis, necrosis, or mixed phenotypes depending on cell type, although the underlying mechanisms remain unclear. Using murine lung endothelial cells, we found that hyperoxia caused cell death by apoptosis involving both extrinsic (Fas-dependent) and intrinsic (mitochondria-dependent) pathways. Hyperoxia-dependent activation of the extrinsic apoptosis pathway and formation of the death-inducing signaling complex required NADPH oxidase-dependent reactive oxygen species production, because this process was attenuated by chemical inhibition, as well as by genetic deletion of the p47(phox) subunit, of the oxidase. Overexpression of heme oxygenase-1 prevented hyperoxia-induced cell death and cytochrome c release. Likewise, carbon monoxide, at low concentrations, markedly inhibited hyperoxia-induced endothelial cell death by inhibiting cytochrome c release and caspase-9/3 activation. Carbon monoxide, by attenuating hyperoxia-induced reactive oxygen species production, inhibited extrinsic apoptosis signaling initiated by death-inducing signal complex trafficking from the Golgi apparatus to the plasma membrane and downstream activation of caspase-8. We also found that carbon monoxide inhibited the hyperoxia-induced activation of Bcl-2-related proteins involved in both intrinsic and extrinsic apoptotic signaling. Carbon monoxide inhibited the activation of Bid and the expression and mitochondrial translocation of Bax, whereas promoted Bcl-X(L)/Bax interaction and increased Bad phosphorylation. We also show that carbon monoxide promoted an interaction of heme oxygenase-1 with Bax. These results define novel mechanisms underlying the antiapoptotic effects of carbon monoxide during hyperoxic stress.  相似文献   

18.
Reactive oxygen species (ROS) are important mediators of cellular signal transduction cascades such as proliferation, migration, and apoptosis. Chronic exposure of isolated β-cells to proinflammatory cytokines elevates intracellular oxidative stress leading to the demise of pancreatic β-cells culminating in the onset of diabetes. Although the mitochondrial electron transport chain is felt to be the primary source of ROS, several lines of recent evidence suggest that phagocyte-like NADPH oxidase plays a central role in cytokine-mediated ROS generation and apoptosis of β-cells. However, the precise mechanisms underlying the regulation of NADPH oxidase remain unknown. To address this, insulin-secreting INS 832/13 cells were treated with cytomix (IL-1β, IFN-γ, and TNF-α; 10 ng/ml each) for different time intervals (0-24 h). A significant, time-dependent increase in NADPH oxidase activation/intracellular ROS production, p47(phox) subunit, but not p67(phox) subunit, expression of the phagocyte-like NADPH oxidase were demonstrable under these conditions. Furthermore, siRNA-p47(phox) transfection or exposure of INS 832/13 cells to apocynin, a selective inhibitor of NADPH oxidase, markedly attenuated cytomix-induced ROS generation in these cells. Cytomix-mediated mitochondrial dysfunction in INS 832/13 cells was evident by a significant loss of mitochondrial membrane potential (MMP) and upregulated caspase 3 activity. Cytomix treatment also caused a transient (within 15 min) activation of Rac1, a component of the NADPH oxidase holoenzyme. Furthermore, GGTI-2147 and NSC23766, known Rac1 inhibitors, not only attenuated the cytomix-induced Rac1 activation but also significantly prevented loss of MMP (NSC23766 > GGTI-2147). However, NSC23766 had no effect on cytomix-induced NO generation or caspase 3 activation, suggesting additional regulatory mechanisms might underlie these signaling steps. Together, these findings suggested that Rac1-mediated regulation of phagocyte-like NADPH oxidase contributes to cytokine-mediated mitochondrial dysfunction in the β-cell.  相似文献   

19.
NADPH oxidase activation and assembly during phagocytosis   总被引:20,自引:0,他引:20  
Generation of superoxide (O2-) by the NADPH-dependent oxidase of polymorphonuclear leukocytes is an essential component of the innate immune response to invading microorganisms. To examine NADPH oxidase function during phagocytosis, we evaluated its activation and assembly following ingestion of serum-opsonized Neisseria meningitidis, serogroup B (NMB), and compared it with that elicited by serum-opsonized zymosan (OPZ). Opsonized N. meningitidis- and OPZ-dependent generation of reactive oxygen species by polymorphonuclear leukocytes peaked early and then terminated. Phosphorylation of p47phox coincided with peak generation of reactive oxygen species by either stimulus, consistent with a role for p47phox phosphorylation during NADPH oxidase activation, and correlated with phagosomal colocalization of flavocytochrome b558 (flavocytochrome b) and p47phox and p67phox (p47/67phox). Termination of respiratory burst activity did not reflect dephosphorylation of plasma membrane- and/or phagosome-associated p47phox; in contrast, the specific activity of phosphorylated p47phox at the phagosomal membrane increased. Most significantly, termination of oxidase activity paralleled the loss of p47/67phox from both NMB and OPZ phagosomes despite the continued presence of flavocytochrome b. These data suggest that 1) the onset of respiratory burst activity during phagocytosis is linked to the phosphorylation of p47phox and its translocation to the phagosome; and 2) termination of oxidase activity correlates with loss of p47/67phox from flavocytochrome b-enriched phagosomes and additional phosphorylation of membrane-associated p47phox.  相似文献   

20.
Increased oxidative stress plays a role in the pathogenesis of beta-cell dysfunction and death. We studied isoforms of NADPH oxidase components in islets of Langerhans isolated from rat pancreas and tumoral rat beta-cell line RINm5F cells by RT-PCR and sequencing of its products. RT-PCR revealed that isolated islets constitutively expressed mRNA of NADPH oxidase components, Nox1, Nox2, Nox4 and p22(phox) as membrane-associated components and p47(phox), Noxo1 (homologue of p47(phox)), Noxa1 (homologue of p67(phox)), and p40(phox) as cytosolic components. RINm5F cells showed a similar pattern of expression but Nox2 mRNA was not detected. Expression of Nox1, Nox4, Noxo1 and Noxa1 was confirmed by sequencing the PCR products. Immunohistochemistry revealed the expression of NADPH oxidase component in beta-cells of rat pancreatic islets. Glucose-stimulated insulin secretion from isolated islets was suppressed by diphenyleneiodonium, a flavocytochrome inhibitor, but not by apocynin, an inhibitor of p47(phox) translocation to membranes. Our results suggest that the functional significance of NADPH oxidase in insulin secretion may merit further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号