首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoprotein IIIa was quantitated in human platelets by radioimmunoassay using antisera specific to platelet membranes and purified glycoprotein IIIa. Glycoprotein IIIa and glycoprotein IIb were isolated from washed platelets by Triton X-114 extraction followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radioiodinated glycoprotein IIIa was further purified by affinity chromatography on Lentil lectin-Sepharose 4B. Purified glycoprotein IIb showed little crossreactivity with 125I-labeled glycoprotein IIIa using the anti-platelet membrane or anti-glycoprotein IIIa antisera on a competition inhibition radioimmunoassay. The expression of glycoprotein IIIa epitopes were the same for the purified glycoprotein IIIa and glycoprotein IIIa in Triton X-100 solubilized platelets. A 66 kDa protein derived from glycoprotein IIIa by limited proteolysis of platelet membranes also expressed the same epitopes as intact glycoprotein IIIa. Solubilized platelets contained approximately 16 micrograms of total glycoprotein IIIa antigen per 10(9) cells. The level of glycoprotein IIIa determined by radioimmunoassay in one patient with Glanzmann's thrombasthenia amounted to 6.7% of normal and it was close to the values obtained by other methods.  相似文献   

2.
Fibrinogen binding to receptors on stimulated platelets is a prerequisite for platelet aggregation. In order to identify the platelet fibrinogen receptor, we modified fibrinogen with the photoreactive, heterobifunctional cross-linking reagent methyl 4-azidobenzoimidate (MABI). MABI-fibrinogen was fully clottable and able to support platelet aggregation. To photoaffinity label the fibrinogen receptor, gel-filtered human platelets were incubated at 37 degrees C in the dark with 200 micrograms/ml of MABI-fibrinogen, 10 microM ADP, and 0.5 mM calcium. Irradiation of these platelets with ultraviolet light resulted in the incorporation of MABI-fibrinogen into the platelet surface. Incorporation could be prevented by excess native fibrinogen suggesting that MABI-fibrinogen had interacted with the fibrinogen receptor before photolysis. Examination of the irradiated platelets by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the photoactivated MABI-fibrinogen had been incorporated into a 105,000 molecular weight membrane polypeptide that also contained the PlA1 antigen. Thus, this polypeptide has the characteristics of the membrane glycoprotein IIIa. Previous studies have shown that thrombasthenic platelets lack this glycoprotein and fail to bind fibrinogen after stimulation by ADP. Consequently, our data suggest that glycoprotein IIIa constitutes at least one component of the platelet fibrinogen receptor.  相似文献   

3.
Subunit structure of the erythropoietin receptor   总被引:4,自引:0,他引:4  
Chemical cross-linking of the red blood cell hormone, erythropoietin (Epo), to its receptor on erythroid cells has revealed the presence of two proteins closely associated with Epo, but the relationship between these two proteins is controversial. Using the cross-linking reagents disuccinimidyl suberate and dithiobissuccinimidyl propionate, we show that 125I-Epo can be specifically conjugated in a complex of 224kDa using mouse fetal liver cells, bone marrow cells, and Friend virus-induced splenic erythroblasts as demonstrated by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. Under reducing conditions, the 224-kDa complex appeared as two Epo conjugates of 136 kDa and 119 kDa, and these bands were also observed to a variable extent in some nonreducing gels. Disulfide linking of the 136-kDa and 119-kDa bands was confirmed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis run under nonreducing followed by reducing conditions. With increasing time of 125I-Epo binding to Friend virus erythroblasts in the presence of sodium azide to inhibit receptor internalization, the 136-kDa and 119-kDa bands seen under reducing conditions increased markedly in intensity, whereas the 224-kDa band seen under nonreducing conditions declined. These results suggest that the 224-kDa Epo conjugate is inefficiently solubilized under nonreducing conditions following prolonged periods of Epo binding. A single class of saturable, high affinity receptors for Epo on each of the cell types tested is demonstrated. It is concluded that the two disulfide-linked Epo-binding proteins which can be independently cross-linked to Epo form a single ligand binding site.  相似文献   

4.
C D Weiss  J A Levy    J M White 《Journal of virology》1990,64(11):5674-5677
The oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein (gp120) was examined by treating infectious virions with chemical cross-linking agents and subjecting the protein to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and velocity centrifugation. Immunoblots of cross-linked samples revealed three gp120 bands and an approximately threefold shift in gp120 sedimentation. Our finding of cross-linking solely between gp120 suggests that the gp120 subunits are closely associated in the native envelope structure.  相似文献   

5.
Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with 125I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/[3H]NaBH4. Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects.  相似文献   

6.
A rat monoclonal antibody, GoH3, recognizes cell surface antigens on epithelial cells in a variety of tissues in both man and mouse. Furthermore, the antibody showed reactivity with endothelial cells and blood platelets. The molecule recognized by GoH3 on platelets was determined by immunoprecipitation, followed by analysis on one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. GoH3 precipitated glycoproteins Ic and IIa from both human and mouse platelets. Glycoprotein Ic consists of disulfide-linked heavy and light chains which both appeared to be glycosylated. As determined by enzymatic digestion followed by gel analyses, both "complex" and "high mannose" type of N-linked oligosaccharides are present on the heavy and light chain of human glycoprotein Ic and on the heavy chain of mouse glycoprotein Ic. The light chain of mouse glycoprotein Ic only carries high mannose type of N-linked oligosaccharides. The N-linked glycans on human and mouse glycoprotein IIa are all of the complex type. The glycoproteins Ic and IIa co-sedimented in sucrose gradients and formed complexes upon treatment of intact platelets with the chemical cross-linking reagent dithiobis(succinimidyl propionate). Dissociation of the complex by chaotropic agents followed by immunoprecipitation establishes that the epitope recognized by GoH3 is located on the Ic molecule. These results provide evidence that the two glycoproteins, Ic and IIa, exist as a heterodimer complex in the platelet membrane.  相似文献   

7.
The proteins of the outer membrane of Neisseria gonorrhoeae play an important role in the serotyping system defined by K. H. Johnston et al. (J. Exp. Med. 143:741–758, 1976). This study attempted to delineate the molecular arrangement of the major proteins of the outer membrane of the gonococcus by using three approaches. First, natural protein-protein relationships were demonstrated by symmetrical, two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Second, proteins exposed on the surface of outer membrane vesicles were cross-linked by using the bifunctional reagents dimethyl-3,3′-dithiobispropionimidate and dithiobis[succinimidyl propionate]. Third, specific antigen-antibody interactions on the surface of membrane vesicles were analyzed by radioautographic techniques. The major proteins of the outer membrane of the gonococcus were defined, and a nomenclature was devised to take into account the effects of heat and reducing agents on the resolution of these proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Results of cross-linking experiments strongly suggest that two of the major proteins of the gonococcal outer membrane (proteins 1 and 3) form a hydrophobically associated trimeric unit in situ which can be stabilized by selective cross-linking reagents. Results substantiated that these proteins are responsible for imparting serotypic specificity.  相似文献   

8.
An 18-kDa 125I-sialoglycopeptide growth inhibitor was covalently cross-linked to its binding site on intact cultured Swiss 3T3 cells by three bifunctional cross-linkers with short (dimethyl adipimate), medium (disuccinimidyl suberate), and long (bis(2-succinimidooxycarbonyloxyethyl)sulfone) chain lengths. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated a band of Mr approximately 168,000 regardless of which cross-linker was used. The labeling of this band was specific in that it was prevented by excess unlabeled inhibitor and the apparent molecular weight of the cross-linked receptor-ligand complex was unchanged by treatment with reducing agent. The efficiency of the cross-linking was increased by increasing pH, and the extent of covalent cross-linking was dependent on the concentration of the bifunctional reagent. Octyl glucoside and sodium dodecyl sulfate were effective in solubilizing the receptor while Triton X-100 did not extract the receptor from the plasma membrane. These observations suggest that the 168-kDa binding species represents the 125I-sialoglycopeptide cross-linked to a specific plasma membrane receptor and that the receptor does not appear to contain interchain disulfide bonds.  相似文献   

9.
Human platelets were surface-labeled by the periodate/NaB3H4 method or by lactoperoxidase-catalysed iodination with 125I. The labeled platelets were treated with chymotrypsin under conditions known to give platelets which aggregate with fibrinogen without stimulation with ADP. Platelets and supernatant were then analysed by various gel electrophoretic techniques including isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions and two-dimensional non-reduced/reduced sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by fluorography or indirect autoradiography. Chymotrypsin-treatment of surface-labeled platelets degraded the major glycoproteins Ib, IIb and IIIa but also GP120(4.9-5.4), GPIc and GPV. The membrane-bound fragments of GPIb, IIb and IIIa could be identified and also the supernatant fragments of GPIb and GPV. GPIIIa was also cleaved within a loop structure formed by disulfide bond(s). The fact that remnants of both GPIIb and IIIa are left on chymotrypsin-treated platelets which aggregate spontaneously with fibrinogen may indicate that a complex formed by these remnants constitutes the fibrinogen-binding site on platelets.  相似文献   

10.
The bombesin receptor present on the surface of murine and human cells was identified using 125I-labeled gastrin-releasing peptide as a probe, the cross-linking agent disuccinimidyl suberate, and sodium dodecyl sulfate gels. A clone of NIH-3T3 cells which possesses approximately 80,000 bombesin receptors/cell with a single binding constant of approximately 1.9 X 10(-9) M was used in these studies. In addition, we used Swiss 3T3 cells and a human glioma cell line which possesses approximately 100,000 and approximately 55,000 bombesin receptors/cell, respectively. Under conditions found optimal for binding, it is demonstrated that 125I-labeled gastrin-releasing peptide can be cross-linked specifically to a glycoprotein of apparent molecular mass of 65,000 daltons on the surface of the NIH-3T3 cells. Similar results were obtained when the cross-linked product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions. Moreover, the cross-linking reaction is specific and saturable and the 65,000-dalton polypeptide is not observed when the cross-linking experiments were performed with a NIH-3T3 cell line which is devoid of bombesin receptors. Interestingly, glycoproteins with apparent molecular weights of 75,000 were labeled specifically by 125I-labeled gastrin-releasing peptide when similar experiments were performed with Swiss 3T3 cells and with human glioma cell line GM-340. These different molecular weights may indicate differential glycosylation as treatment with the enzyme N-glycanase reduced the apparent molecular weight of the cross-linked polypeptide to 45,000. On the basis of these results it is concluded that the cross-linked polypeptides represent the bombesin receptor or the ligand-binding subunit of a putative larger bombesin receptor expressed on the surface of these cells.  相似文献   

11.
A two-dimensional electrophoretic system has been developed for the separation of chloroplast thylakoid membrane proteins. This system incorporates nondenaturing polyacrylamide gel electrophoresis in the presence of the nonionic detergent dodecyl-beta-D-maltoside in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Thylakoid membranes isolated from Spinacia oleracea were solubilized in 1.0% dodecyl-beta-D-maltoside and separated in 4-7% linear acrylamide gradient tube gels which contained 0.05% dodecyl-beta-D-maltoside. After electrophoresis, the tube gels were equilibrated with a sodium dodecyl sulfate-containing equilibration buffer and applied to a 12.5-20% acrylamide linear gradient gel. The Lammelli buffer system was used in both dimensions. The two-dimensional gels were analyzed by staining sequentially with 3,3',5,5'-tetramethylbenzidine-H2O2, Coomassie blue, and silver staining. A number of protein components were identified on "Western blots" of these two-dimensional gels by immunological localization. Membrane protein complexes such as the light-harvesting chlorophyll a/b protein complex, photosystem I, photosystem II, the cytochrome b6/f complex and ribulose bisphosphate carboxylase appear to migrate as essentially intact complexes in the first dimension and appear as vertical series of resolved subunits in the second dimension. This technique complements isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis in providing additional information concerning the subunit composition of membrane protein complexes and may prove to be of general utility for studying the protein composition of other membrane systems.  相似文献   

12.
To examine the relationship between glycoprotein Ib and other proteins in the platelet membrane and the interaction of this protein with thrombin, platelets were crosslinked by two cleavable reagents, SADP (N-succinimidyl(4-azidophenyldithio)propionate) and DTSSP (3,3′-dithiobis(sulfosuccinimidyl propionate)). Two-dimensional, unreduced-reduced sodium dodecyl sulphate (SDS)-polyacrylamide electrophoresis and staining by silver or wheat germ agglutinin-conjugated peroxidase, after protein transfer to nitrocellulose, demonstrated that SADP intramolecularly crosslinked glycoprotein Ib and formed intermolecular complexes of glycoprotein IIb and some high molecular weight proteins. DTSSP intermolecularly crosslinked glycoprotein Ib, glycoprotein IIb, and other high molecular weight proteins. With a low concentration of 125I-labeled TLCK-thrombin (6 nM), crosslinking with SADP yielded a 200 000 Da complex containing radioactive-labeled thrombin, and high TLCK-thrombin concentration (0.1 μM) gave the complex and a 167 000 band. α- and TLCK-thrombin crosslinking with DTSSP also yielded the 200 000 complex, with the remaining radioactivity in a band corresponding to a highly crosslinked complex. The 200 000 complex formed by reaction with SADP or DTSSP was markedly reduced by preincubation of platelets with excess unlabeled TLCK-thrombin and had a pI similar to glycoprotein Il. These results suggest that glycoprotein Il is one of the proteins composing the high affinity receptor for thrombin.  相似文献   

13.
A monoclonal antibody, P1H5, to the human fibroblast class II extracellular matrix receptor (ECMR II) specifically inhibits human fibroblast adhesion to collagen and immunoprecipitates a cell surface receptor containing an alpha and beta subunit of approximately 140 kilodaltons each (Wayner, E. A., and Carter, W. G. (1987) J. Cell Biol. 105, 1873-1884). We report here that P1H5 also specifically inhibits adhesion of unactivated human platelets to type I and III collagens, but not to fibronectin. Immunoprecipitation of the class II ECMR from Triton X-100 detergent lysates of platelets, after cell surface iodination, identified the platelet collagen receptor. Peptide mapping confirmed that the II alpha and II beta subunits immunoprecipitated from platelets are structurally homologous with those derived from fibroblasts. The platelet ECMR II alpha and -beta subunits comigrate with platelet membrane glycoproteins Ia and IIa, respectively, on two-dimensional nonreduced-reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. These results indicate that platelet and fibroblast adhesion to collagen are both mediated by a similar receptor and that the alpha and beta subunits of this receptor are identical to platelet membrane glycoproteins Ia and IIa, respectively. Although glycoprotein Ia has been previously implicated as a collagen binding protein, our results are the first direct evidence that platelet glycoprotein Ia is associated with glycoprotein IIa in a heterodimer complex and that this complex, by mediating platelet attachment, is an actual receptor for platelet adhesion to collagen.  相似文献   

14.
GH receptors (GHRs) have been shown by affinity cross-linking to be present in late pregnant mouse liver microsomes in three forms with cross-linked mol wts of 125,000, 62,000, and 56,000. The two lower mol wt forms of the receptor were partially purified by bovine GH-affinity chromatography of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate-solubilized extracts of late pregnant mouse hepatic microsomes. The GHRs were identified from the partially purified receptor preparation and isolated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated GHRs had mol wts of 40,700 and 37,500, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Enzymatic cleavage of N-linked glycosylation from the isolated GHRs reduced their apparent mol wts to 33,600 and 30,900, respectively. Sixteen of the amino-terminal 17 amino acid residues of the two isolated receptors were sequenced and determined to be identical. One amino acid residue in each of the proteins, at position 14, could not be identified. Rabbit polyclonal antiserum was produced against the isolated GHRs. The resulting antiserum precipitated the isolated 40,700 and 37,500 mol wt proteins as well as cross-linked mouse GHRs (including the high mol wt form of the receptor). However, the antiserum did not inhibit the binding of mouse GH to either membrane bound or 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate-solubilized GHRs.  相似文献   

15.
As reported previously, homologous plasma lipoproteins specifically bind to the plasma membrane of human blood platelets. The two major lipoprotein-binding membrane glycoproteins were purified to apparent homogeneity and identified by their mobilities in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, both in the nonreduced and reduced state, by specific antibodies against glycoproteins IIb (GPIIb) and IIIa (GPIIIa), respectively, including the alloantibody anti-PlA1 and monoclonal antibodies. Furthermore, lipoprotein binding to intact platelets is also inhibited in a dose-dependent fashion by preincubation of the platelets with antibodies against these glycoproteins. From these experiments it can be concluded that lipoproteins bind to both components of the glycoprotein IIb-IIIa complex in isolated membranes and intact platelets. High density lipoprotein and low density lipoprotein bind to GPIIIa blotted to nitrocellulose in a way that binding of one species interferes with the binding of the other. Addition of fibrinogen significantly inhibits this binding. The specific binding of fibrinogen to GPIIIa is strongly inhibited in the presence of either of the two lipoproteins. LDL and HDL are specifically bound by isolated GPIIb, too. In our blotting experiments fibrinogen shows no binding to this membrane glycoprotein. On the other hand, fibrinogen significantly interferes with the interaction between GPIIb and the lipoproteins.  相似文献   

16.
The present study was intended to examine the structure of the rat Leydig cell gonadotropin receptor. Leydig cell suspensions were prepared by either collagenase digestion or mechanical disruption of the testes. The cells were incubated with 125I-human chorionic gonadotropin (hCG) following which the bound 125I-hCG was covalently cross-linked to the cell surface receptor using a cleavable (dithiobis(succinimidyl propionate] and a noncleavable (disuccinimidyl suberate) cross-linking reagent. The extracted cross-linked membrane proteins were resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions and subjected to autoradiographic analysis. Under nonreducing conditions, three radiolabeled bands, in addition to intact hCG and its alpha-subunit, were detected with apparent molecular weights of 184,000, 136,000, and 103,000. However, under reducing conditions, three radiolabeled bands migrated on the gel corresponding to molecular weights of 144,000, 106,000, and 75,000. The binding of 125I-hCG to the receptor was inhibited by hCG and luteinizing hormone, but not by a number of other peptides or proteins. The radiolabeled bands were not detectable in hCG down-regulated Leydig cells. Furthermore, a similar autoradiographic pattern of 125I-hCG-linked complexes was seen when the 125I-linked receptor complex was subjected to immunoprecipitation with anti-hCG antibodies followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, evidence was obtained indicating that these three labeled bands were derived from the same molecular species. The data suggests that the hCG receptor in Leydig cell is probably an oligomeric complex with a molecular weight of about 250,000, which is composed of three polypeptide chains of molecular weights 121,000, 83,000, and 52,000 held together through noncovalent forces. Additionally, collagenase treatment of Leydig cells does not appear to alter the autoradiographic pattern of the 125I-hCG-linked receptor.  相似文献   

17.
Cross-linking of the proteins in the outer membrane of Escherichia coli.   总被引:15,自引:0,他引:15  
1. The organization of the proteins in the outer membrane of Escherichia coli was examined by the use of cross-linking agents and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment of protein A-peptidoglycan complexes with dithiobis(succinimidyl propionate) or glutaraldehyde produced the dimer, trimer, and higher oligomers of protein A. Both forms of this protein, proteins A1 and A2, produced similar cross-linking products. No cross-linking of protein A to the peptidoglycan was detected. 2. The proteins of the isolated outer membrane varied in their ease of cross-linking. The heat-modifiable protein, protein B, was readily cross-linked to give high molecular weight oligomers, while protein A formed mainly the dimer and trimer under the same conditions. The pronase resistant fragment, protein Bp, derived from protein B was not readily cross-linked. No linkage of protein A to protein B was detected. 3. Cross-linking of cell wall preparations, consisting of the outer membrane and peptidoglycan, showed that protein B and the free form of the lipoprotein, protein F, could be linked to the peptidoglycan. A dimer of protein F, and protein F linked to protein B, were detected. 4. These results suggest that specific protein-protein interactions occur in the outer membrane.  相似文献   

18.
Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures.   总被引:15,自引:11,他引:4       下载免费PDF全文
Sucrose gradient sedimentation analysis of rotavirus SA11-infected Ma104 cells revealed the presence of oligomers of VP7, the structural glycoprotein, and NS28, the nonstructural glycoprotein. Cross-linking the proteins, either before or after sucrose gradient centrifugation, stabilizes oligomers, which can be analyzed by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation. The major NS28 oligomer was tetrameric, though dimers and higher-order structures were observed as well. VP7 formed predominantly dimers, and again tetramers and higher oligomeric forms were present. Each oligomer of VP7 and NS28 sedimented at the same characteristic rate through the sucrose gradient either in the presence or absence of cross-linking. Monomers could not be cross-linked to form oligomers, demonstrating that cross-linked oligomers were not artifactually derived from monomers. Reversing the cross-linking of immunoprecipitated VP7 on reducing SDS-PAGE resulted in the appearance of only the monomeric form of VP7. Dissociation of the NS28 oligomers resulted in stable dimers as well an monomers. In the faster-sedimenting fractions, a 16S to 20S complex, which contained the rotavirus outer shell proteins VP7 and VP4 cross-linked to NS28, was observed. These complexes were shown not to be associated with any known subviral particle. The association of VP4, NS28, and VP7 may represent sites on the endoplasmic reticulum membrane that participate in the budding of the single-shelled particles into the lumen of the endoplasmic reticulum, where maturation to double-shelled particles occurs.  相似文献   

19.
The quaternary structure of Escherichia coli RNA polymerase has been studied by cross-linking with a periodate-cleavable bis(imido ester), N,N'-bis(2-carboximidoethyl)tartaramide dimethyl ester dihydrochloride (CETD). The cross-linked holoenzyme gives a characteristic five-band pattern after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. The components of each band have been unambiguously identified by (a) molecular-weight measurements, (b) comparisons of cross-linking patterns of holoenzyme and core enzyme, and (c) periodate cleavage of cross-links followed by a second dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bands are (1) alphabeta and alphabeta', (2) sigmabeta and sigmabeta', (3) alphasigmabeta', (4) betabeta', and (5) sigmabetabeta'. Bands 2 and 4 are the most prominent at low reagent concentrations (up to 2.5 mM) but band 5 becomes the most prominent at higher concentrations. There are no bands corresponding to alphaalpha and alphasigma; a faint band has been tentatively identified as alphabetabeta'. Shorter bis(imido esters) are much less effective cross-linking reagents than CETD and they do not give rise to any other cross-linked species. On the basis of these observations, a model for the subunit arrangement of RNA polymerase is proposed.  相似文献   

20.
Palmitylation of the glycoprotein IIb-IIIa complex in human blood platelets   总被引:3,自引:0,他引:3  
The presence of covalently bound palmitic acid in fibrinogen receptors, glycoproteins (GP) IIb and IIIa, has been explored in human blood platelets. Membrane fractions were isolated from fresh blood platelets labeled with [9,10-3H]palmitic acid and then analyzed for radioactive proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein bands were visualized by staining with Coomassie Brilliant Blue, excised, and counted in a liquid scintillation counter. The results indicate that membrane proteins with electrophoretic mobility corresponding to glycoproteins IIb and IIIa incorporate [9,10-3H]palmitic acid. The palmitylated glycoproteins IIb and IIIa were immunoprecipitated by specific anti-GP IIb and GP IIIa antisera. It is interesting to note that the palmitylation of these glycoproteins occurred rapidly in platelets activated with 0.5 unit of thrombin or 30 microM ADP. At the concentration used (100 micrograms/ml), cycloheximide did not inhibit incorporation of [3H]palmitate into the glycoproteins showing that this process is not dependent upon protein synthesis. The acyl moiety was resistant to denaturating detergents, delipidation with organic solvents, and hydrolyzable with hydroxylamine. In the case of membrane protein with the electrophoretic mobility of GP IIb, the radioactive label was significantly decreased after reduction with 2-mercaptoethanol. Final identification of GP IIIa as an acylated product in human platelets incubated with [9,10-3H]palmitic acid was provided by two-dimensional polyacrylamide gel electrophoresis. In contrast to GP IIb alpha, GP IIIa isolated by this method showed the presence of attached radioactive palmitic acid residues. Analysis by high performance liquid chromatography after methanolysis of the [3H]palmitate-labeled glycoproteins confirmed the fatty acid nature of the label. Palmitylation is a newly identified post-translational modification of the fibrinogen receptor which may play an important role in its interaction with the membrane and/or its biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号