首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of D-cycloserine on the establishment of twist states in Bacillus subtilis macrofibers was examined. Macrofibers produced in the presence of the drug differed in twist compared with those produced in its absence. The degree of twist alteration was dependent on the concentration of D-cycloserine in the growth medium. Macrofibers of different twist states representative of the entire twist spectrum from tight left-handedness to tight right-handedness were produced in strains FJ7 and C6D in four different ways: by control of the concentration of D-alanine, magnesium sulfate, or ammonium sulfate in the growth medium or by control of the growth temperature. The structures so produced were used to determine the effect of D-cycloserine on twist establishment starting from different twist states throughout the twist spectrum. In all but one case, twist resulting from growth in the presence of D-cycloserine was further towards the left-hand end of the twist spectrum than that produced in its absence, the exception being the unusual left-handed twist states produced in strains C6D and the closely related RHX 11S at high D-alanine concentrations described here. Studies of the interaction between D-cycloserine and D-alanine both used alone and used independently with the other twist-modifying systems (temperature, magnesium sulfate, and ammonium sulfate) revealed that changes in twist resulting from D-cycloserine were always in the opposite direction from those resulting from D-alanine. This antagonism suggests that the biochemical mechanism of twist regulation involves the metabolism of peptidoglycan, particularly reactions involving D-alanine or the dipeptide D-alanyl-D-alanine. This antagonism suggests that the biochemical mechanism of twist regulation involves the metabolism of peptidoglycan, particularly reactions involving D-alanine or the dipeptide D-alanyl-D-alanine. The possibility that peptidoglycan cross-linking is involved is discussed.  相似文献   

2.
Twist states of Bacillus subtilis macrofibers were found to vary as a function of the concentration of D-alanine in the medium during growth. L-Alanine in the same concentration range had no effect. Increasing concentrations of D-alanine resulted in structures progressively more right-handed (or less left-handed). All strains examined in this study, including mutants fixed in the left-hand domain as a function of temperature, responded to D-alanine in the same way. All twist states from tight left- to tight right-handedness could be achieved solely by varying the D-alanine concentration. The D-alanine-requiring macrofiber strain 2C8, which carries a genetic defect (dal-1) in the alanine racemase, behaved in a similar fashion. The combined effects of D-alanine and ammonium sulfate (a factor known to influence macrofiber twist development in the leftward direction) were examined by using both strains able to undergo temperature-induced helix hand inversion and others incapable of doing so. In all cases, the effects of D-alanine predominated. A synergism was found in which increasing the concentration of ammonium sulfate in the presence of D-alanine enhanced the right-factor activity of the latter. A D-alanine pulse protocol provided evidence that structures undergo a transient inversion indicative of "memory." Chloramphenicol treatment inhibited the establishment of memory in the D-alanine-induced right to left inversion, supporting the existence of a "left twist protein(s)" that is required for the attainment of left-handed twist states. Chemical analysis of cell walls obtained from right- and left-handed macrofibers produced in the presence and absence of D-alanine, respectively, failed to reveal twist state-specific differences in the overall composition of either peptidoglycan or wall teichoic acids.  相似文献   

3.
4.
The regulation of bacterial transcription initiation   总被引:2,自引:0,他引:2  
  相似文献   

5.
The folding process required for helical macrofiber formation after the outgrowth of Bacillus subtilis spores was found to be blocked by very low concentrations of penicillin G (1 to 3 ng/ml). Under such conditions, growth and septation without cell separation resulted in characteristic disorganized multicellular structures. Higher concentrations (4 and 10 ng/ml) were needed to inhibit spore outgrowth and vegetative growth, respectively.  相似文献   

6.
7.
Duplication of the bacterial cell and its initiation   总被引:5,自引:0,他引:5  
  相似文献   

8.
Studies in pro- and eukaryotes have revealed that translation can determine the stability of a given messenger RNA. In bacteria, intrinsic mRNA signals can confer efficient ribosome binding, whereas translational feedback inhibition or environmental cues can interfere with this process. Such regulatory mechanisms are often controlled by RNA-binding proteins, small noncoding RNAs and structural rearrangements within the 5' untranslated region. Here, we review molecular events occurring in the 5' untranslated region of primarily Escherichia coli mRNAs with regard to their effects on mRNA stability.  相似文献   

9.
The steady-state twist of Bacillus subtilis macrofibers produced by growth in complex medium was found to vary as a function of the magnesium and ammonium concentrations. Four categories of macrofiber-producing strains that differed in their response to temperature regulation of twist were studied. Macrofibers were cultured in the complex medium TB used in previous experiments and in two derivative media, T (consisting of Bacto Tryptose), in which most strains produced left-handed structures, and Be (consisting of Bacto Beef Extract), in which right-handed macrofibers arose. In nearly all cases, increasing concentrations of magnesium led to the production of macrofibers with greater right-handed twist. Some strains unable to form right-handed structures as a function of temperature could be made to do so by the addition of magnesium. Inversion from right- to left-handedness in strain FJ7 induced by temperature shift-up was blocked by the addition of magnesium. The presence of magnesium during a high-temperature pulse did not block the establishment of "memory," although it delayed the initiation of the transient inversion following return to low temperature. The twist state of macrofibers grown without a magnesium supplement was not instantaneously affected by the addition of magnesium. Such fibers were, however, protected from lysozyme attack and associated relaxation motions. Lysozyme degradation of purified cell walls (both intact and lacking teichoic acid) was also blocked by the addition of magnesium. Ammonium ions influenced macrofiber twist development towards the left-hand end of the twist spectrum. Macrofiber twist produced in mixtures of magnesium and ammonium was strain and medium dependent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
During initiation of bacterial protein synthesis, messenger RNA and fMet-tRNAfMet bind to the 30S ribosomal subunit together with initiation factors IF1, IF2, and IF3. Docking of the 30S preinitiation complex to the 50S ribosomal subunit results in a peptidyl-transfer competent 70S ribosome. Initiation with an elongator tRNA may lead to frameshift and an aberrant N-terminal sequence in the nascent protein. We show how the occurrence of initiation errors is minimized by (1) recognition of the formyl group by the synergistic action of IF2 and IF1, (2) uniform destabilization of the binding of all tRNAs to the 30S subunit by IF3, and (3) an optimal distance between the Shine-Dalgarno sequence and the initiator codon. We suggest why IF1 is essential for E. coli, discuss the role of the G-C base pairs in the anticodon stem of some tRNAs, and clarify gene expression changes with varying IF3 concentration in the living cell.  相似文献   

11.
12.
Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.  相似文献   

13.
The task of the present work was to answer the question: is the free 5′-end needed for effective translation of a model polyribonucleotide template — polyuridylic acid — in a bacterial (E. coli) cell-free system? For this purpose, the template activities of the original polyuridylic acid with its free 5′-end and the polyuridylic acid with blocked 5′-end were compared in the bacterial cell-free translation system. To block the 5′-end, the cytidylic oligodeoxyribonucleotide with fluorescein residue at its 5′-end and uridylic oligoribonucleotide sequence at its 3′-end, schematically described as FAM(dC)10(rU)50, was covalently attached (ligated) to the 5′-end of the template polyuridylic acid. It was shown that the efficiency of polyphenylalanine synthesis on the 5′-blocked template and on the polyuridylic acid with free 5′-end was virtually the same. It was concluded that bacterial ribosomes are capable of effectively initiating translation at the polyuridylic sequence independently of the 5′-end of template polyribonucleotide, i.e. via an internal initiation mechanism, in the absence of a Shine-Dalgarno sequence and AUG start codon.  相似文献   

14.
The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNAfMet from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S–mRNA–IF1–IF2–fMet-tRNAfMet complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.  相似文献   

15.
Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.  相似文献   

16.

Background  

When Bacillus subtilis is cultured in a complex fluid medium under conditions where cell separation is suppressed, populations of multicellular macrofibers arise that mature into ball-like structures. The final sedentary forms are found distributed in patterns on the floor of the growth chamber although individual cells have no flagellar-driven motility. The nature of the patterns and their mode of formation are described in this communication.  相似文献   

17.
Tiamulin, a water-soluble and highly effective semisynthetic derivative of pleuromutilin leads to the formation of physiologically inactive polypeptide chain initiation complexes which readily decompose and do not enter the phase of peptide chain elongation. Once elongation has begun it continues even in the presence of tiamulin as has been shown by measuring the formation of N-acetylphenylalanine-poly(phenylalanine). The formation of abortive initiation complexes was observed regardless of whether AcPhe-tRNA of fMet-tRNA was used as an initiator or whether artificial messengers or a natural messenger, like R17 bacteriophage RNA, was used. When this drug was acting on whole cells, it led to the disappearance of polysomes. The only structures which could be detected were of the monosome size. Therefore, polysomes seem to elongate the polypeptide chains in whole cells in the presence of this antibiotic, but since effective reinitiation is blocked, the polysome pool of the cell soon becomes depleted.  相似文献   

18.
19.
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.  相似文献   

20.
Studer SM  Joseph S 《Molecular cell》2006,22(1):105-115
Translation initiation is a key step for regulating the level of numerous proteins within the cell. In bacteria, the 30S initiation complex directly binds to the translation initiation region (TIR) of the mRNA. How the ribosomal 30S subunit assembles on highly structured TIR is not known. Using fluorescence-based experiments, we assayed 12 different mRNAs that form secondary structures with various stabilities and contain Shine-Dalgarno (SD) sequences of different strengths. A strong correlation was observed between the stability of the mRNA structure and the association and dissociation rate constants. Interestingly, in the presence of initiation factors and initiator tRNA, the association kinetics of structured mRNAs showed two distinct phases. The second phase was found to be important for unfolding structured mRNAs to form a stable 30S initiation complex. We show that unfolding of structured mRNAs requires a SD sequence, the start codon, fMet-tRNA(fMet), and the GTP bound form of initiation factor 2 bound to the 30S subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号