首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diethylene triamine pentaacetic acid (DTPA) has been in extensive use as a metal chelator in the development of radiopharmaceuticals and contrast agents. The former application uses DTPA mostly as a bifunctional chelating agent (BCA) conjugated to tumor-targeting vehicles (TTVs) such as monoclonal antibodies (MAbs) and receptor-directed peptides. A new bifunctional DTPA derivative was synthesized by a fully organic scheme. This compound, N(4),N(alpha),N(alpha),N(epsilon),N(epsilon)-[pentakis(carboxymethyl)]-N(4)-(carboxymethyl)-2,6-diamino-4-azahexanoic hydrazide (20) was prepared by a convergent synthesis strategy using N(alpha)-benzyloxycarbonyl-2,3-diaminopropionic acid as the starting compound. This commercially available material was used to build a functionalized triamine which served as the molecular core template for assembling the target molecule. To evaluate the conjugation and radiolabeling capabilities of this new molecule, it was covalently attached to the anti-TAG-72 MAb, Delta CH2HuCC49, and the conjugate was radiolabeled in near-quantitative yields with yttrium-90 ((90)Y) and lutetium-177 ((177)Lu). Biodistribution of the (177)Lu-labeled DTPA-Delta CH2HuCC49 in tumor-bearing nude mice demonstrated preservation of the immunoreactivity of the MAb as indicated by high tumor uptake. In addition to the introduction of a new bifunctional DTPA, this work reports on a novel synthetic approach for preparation of this useful metal chelator and introduces a new conjugation protocol.  相似文献   

2.
Hitherto anti-CEA monoclonal antibodies (MAbs), normally of mouse origin, have been used primarily for clinical diagnosis of colorectal cancer, either as a tumor marker in serum to monitor tumor recurrence, or latterly as a means to localize in vivo CEA-bearing tumors, and metastases in patients. In vivo diagnosis using mouse anti-CEA MAbs has so far had limited clinical utility because the antibodies elicit a strong anti-mouse immunoglobulin immune response on repeated administration in man. This problem has been addressed by the development of various strategies for "humanization" of mouse anti-CEA MAbs by genetic manipulation of immunoglobulin genes. Such humanized, engineered antibodies markedly attenuate the antigenic response directed against the MAb, such that safe, repeated administration to patients has become feasible. Such humanized anti-CEA antibodies can thus be radioactively-labelled and applied for in vivo monitoring and detection of recurrent malignant disease, or used for therapeutic strategies which similarly take advantage of the ability of the antibodies to target cytotoxic agents selectively to tumor cells. The application of these novel procedures for manipulating MAb structure presents entirely new opportunities for diagnosis and treatment of human colorectal cancer.  相似文献   

3.
Morelli  D.  Ménard  S.  Pozzi  B.  Balsari  A.  Colnaghi  M. I. 《Cell biochemistry and biophysics》1994,24(1-3):119-126
Even though the first monoclonal antibodies (MAbs) directed against tumor cells were produced 15 yr ago, the therapeutic application of immunoconjugates is still at the beginning. This is principally because of the enormous work that is required for the development of completely new therapeutic tools. An alternative could be to only use MAbs to improve conventional treatment such as chemotherapy. To this aim, a MAb directed against doxorubicin (DXR) was produced. DXR is an anthracycline antibiotic of which the clinical usefulness in cancer chemotherapy is limited by serious side effects, such as cardiomyopathy, bone marrow depression, and gastrointestinal tract mocositis. This toxicity was found to be reduced by treatment with the antidrug MAb, as shown by reduction in body weight loss and mortality of experimental mice. To improve the DXR therapeutic index, a bifunctional hybrid MAb (DOXER2), capable of simultaneously recognizing DXR and the epidermal growth factor (EGF) receptor, was produced. This reagent was found in vitro to increase the drug toxicity on the epidermoid carcinoma cell line A431, which overexpresses the EGF-R and, at the same time, to reduce DXR cytotoxicity on EGF-R negative cells. The effect of DOXER2 on the DXR biodistribution in vivo was also investigated. In mice previously injected ip with the DOXER2, the uptake of the drug, in comparison to the control group, was found to be reduced in the intestine and in myocardial tissue, and significantly increased in the tumor. The alteration in the drug distribution induced in mice by administration of the DOXER2 could prevent the drug from reaching critical toxic concentrations at sites such as the intestine and heart, which are the main targets of early anthracycline toxic effects. In conclusion, the data so far obtained show that this bifunctional MAb appears to be able to deliver the drug selectively to a tumor that overexpresses the EGF-R maintaining the capability to reduce DXR cytotoxicity on normal cells.  相似文献   

4.
M Miyake  S I Hakomori 《Biochemistry》1991,30(13):3328-3334
The biochemical basis of cell motility has been viewed as a complex process involving cell surface membrane proteins, integrin receptors, growth factors and their receptors, and cytoskeletal components [Rosen & Goldberg (1989) In Vitro 25, 1079]. The possible involvement of glycoconjugates at the cell surface in controlling cell motility has not been systematically investigated. We addressed this question using functional monoclonal antibodies (MAbs), which inhibit cell motility and the metastatic potential of tumor cells, as probes. Two such MAbs, derived from two independent processes of immunization and selection, were found to directed to a common specific carbohydrate structure, Fuc alpha 1----2Gal beta 1----R. MAb MIA-15-5 was established after immunization of mice with small cell lung carcinoma line PC7 and selected on the basis of inhibition of U937 and HEL cell migration. MAb MIA-22-20 was established after immunization with lung adenocarcinoma line MAC-10 and selected on the basis of inhibition of MAC-10 cell migration. These two MAbs were both IgM and were consistently reactive with the Fuc alpha 1----2Gal beta 1----R structure, regardless of the identity of the R group. Various other anti-H MAbs, specific to carrier isotype, did not affect cell motility. MAb MIA-15-5 reacted with 30-40% of high-metastatic variant BL6 of mouse melanoma B16 line but with only less than 5% of low-metastatic variant F1. Metastatic deposition to lung after injection of BL6 cells was inhibited if MAb MIA-15-5 was injected within 3 h but was not inhibited by injection of other anti-H antibodies under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Anti-idiotype antibodies can mimic the conformational epitopes of the original antigen and act as antigen substitutes for vaccination and/or serological purposes. To investigate this possibility concerning the tumor marker carcinoembryonic antigen (CEA), BALB/c mice were immunized with the previously described anti-CEA monoclonal antibody (MAb) 5.D11 (AB1). After cell fusion, 15 stable cloned cell lines secreting anti-Ids (AB2) were obtained. Selected MAbs gave various degrees of inhibition (up to 100%) of the binding of 125I-labeled CEA to MAb 5.D11. Absence of reactivity of anti-Id MAbs with normal mouse IgG was first demonstrated by the fact that anti-Id MAbs were not absorbed by passage through a mouse IgG column, and second because they bound specifically to non-reduced MAb 5.D11 on Western blots. Anti-5.D11 MAbs did not inhibit binding to CEA of MAb 10.B9, another anti-CEA antibody obtained in the same fusion as 5.D11, or that of several anti-CEA MAbs reported in an international workshop, with the exception of two other anti-CEA MAbs, both directed against the GOLD IV epitope. When applied to an Id-anti-Id competitive radioimmunoassay, a sensitivity of 2 ng/ml of CEA was obtained, which is sufficient for monitoring circulating CEA in carcinoma patients. To verify that the anti-Id MAbs have the potential to be used as CEA vaccines, syngeneic BALB/c mice were immunized with these MAbs (AB2). Sera from immunized mice were demonstrated to contain AB3 antibodies recognizing the original antigen, CEA, both in enzyme immunoassay and by immunoperoxidase staining of human colon carcinoma. These results open the perspective of vaccination against colorectal carcinoma through the use of anti-idiotype antibodies as antigen substitutes.  相似文献   

6.
We evaluated the capacity of freshly isolated blood monocytes to mediate antibody-dependent cellular-mediated cytotoxicity (ADCC) in cooperation with murine anti-tumor monoclonal antibodies (MAbs). Blood monocytes isolated from most donors by adherence selection to fibronectin-coated plastic surfaces and subsequently depleted of natural killer/killer (NK/K) cells exhibited significant ADCC activity against tumor cell lines in combination with an IgG3 antitumor MAb (BR55-2). However, significant variation in ADCC competence was observed among donors. Culture parameters influencing monocyte ADCC activity were evaluated and optimized. The influence of MAb isotype on ADCC capacity of anti-tumor MAbs was also evaluated using anti-tumor class-switch variant hybridoma proteins and a panel of anti-tumor MAbs. MAbs of the IgG2a and IgG3 subclasses exhibited high ADCC potential, whereas MAbs of the IgG2b subclass exhibited no ADCC activity. One of two IgG1 MAbs tested exhibited high ADCC activity with monocyte effectors. The role of monocytes or macrophages in tumor remission of cancer patients undergoing MAb immunotherapy is not known. However, correlative studies of monocyte ADCC capacity and responsiveness of cancer patients to MAb immunotherapy may help to establish the role of these effectors in MAb-mediated tumor remissions.  相似文献   

7.
Hybridoma technology was used to raise monoclonal antibodies (MAbs) against wild-type amidase from Pseudomonas aeruginosa. Hybridoma clones secreting polyol-responsive MAbs (PR-MAbs) were screened that bind antigen tightly. but release under mild- and non-denaturing elution conditions, which can be used as ligands in immunoaffinity chromatography. Two of these hybridoma clones (C9E4 and B1E4) secreting MAbs against wild-type amidase were selected in order to check if they are PR-MAbs by using ELISA-elution assay. These hybridoma cell lines secreted MAbs of IgG class which were purified in a single step by Protein A-Sepharose CL-4B chromatography, which revealed two protein bands on SDS-PAGE. Specificity studies of MAb C9E4 revealed that it recognized a common epitope on wild-type and mutant T103I amidases as determined by direct ELISA, as well as by Western blotting under native conditions. This MAb exhibited a higher-affinity constant (K) for the mutant T103I amidase than for the wild-type enzyme. However, this MAb did not recognize either wild-type or mutant T103I enzymes under denaturing conditions suggesting that it binds to a conformation-sensitive epitope on amidase molecule. On the other hand, it also does not recognize either native or denatured forms of mutant C91A amidase suggesting that this substitution disrupted the conformational epitope present on amidase molecule. Furthermore, MAb C9E4 inhibited about 80% of wild-type amidase activity, whereas it activated about 80% of mutant amidase (T103I) activity. However, this MAb did not affect mutant C91A amidase activity which is in agreement with other results presented in this work. The data presented in this work suggest that this MAb acts as a powerful probe to detect conformational changes in native and denatured amidases as well as to differentiate wild-type and mutant (T103I and C91A) amidases.  相似文献   

8.
To study the topology of Na+,K+-ATPase monoclonal antibodies (MAbs) specific for membrane-bound enzyme were produced. Using immunofluorescence staining of viable cells or smears of a pig kidney embryonic (PKE) cell line, two groups of MAbs were selected, namely those binding to extra- or intracellular portions of the alpha-subunit. The extracellular location of peptide loop 804-841 linking the Vth and VIth intramembrane hydrophobic segments was proved using MAb VG2. Another MAb, IIC9, interacting with PKE cells only after membrane perforation (4% formaldehyde and 0.1% Tween-20), was shown to bind to the hydrophilic loop 868-945. The antigenic determinants recognized by MAb IIC9 and VG2 are located in peptides 887-904 and 810-825, respectively. The C-terminus of the alpha-subunit molecule was positioned on the outer side of the cytoplasmic membrane utilizing affinity-purified antibodies to the synthetic peptide corresponding to fragment 999-1008.  相似文献   

9.
Acanthamoeba castellanii is a free-living protozoan that causes keratitis in humans and has been associated with pneumonia and granulomatous amebic encephalitis in dogs, sheep, and other species. Adherence of the Acanthamoeba to epithelial cells is critical to the pathogenesis of this disease. In this study, several mouse monoclonal antibodies (MAb) generated to whole Acanthamoeba trophozoites identified surface membrane epitopes by ELISA and IFA. Nine antibodies inhibited adherence of [(35)S]-methionine-labeled Acanthamoeba trophozoites to hamster corneal epithelial cells by 27-90%. Sodium periodate treatment, but not proteinase K digestion, of whole Acanthamoeba destroyed epitopes recognized by adherence-inhibiting antibodies such as MAb 7H6, suggesting that the adherence epitopes are carbohydrates. Other antibodies, MAb 2A8 for example, recognized surface membrane peptide epitopes that were proteinase K sensitive and sodium periodate resistant. Purified MAb 2A8 was used in an antigen-capture ELISA with peroxidase-labeled MAb 7H6 and demonstrated that the carbohydrate adhesion molecule was linked to the peptide recognized by MAb 2A8. Both MAbs 7H6 and 2A8 recognized a >207-kDa band on a Western blot of eluant from a MAb 2A8 immunoaffinity column, confirming that MAb 7H6 and MAb 2A8 recognize different epitopes on the same adherence molecule. MAbs 7H6 and 2A8 also identified the adhesion molecule in soluble Acanthamoeba membrane preparations and MAb 2A8 immunoaffinity column eluant by ELISA and Western blot. Neither of these antibodies were inhibited from binding to whole trophozoites nor membrane extracts by mannose or mannan in competitive binding assays. When our Acanthamoeba membrane preparations were electrophoresed and immunoblotted with alpha-d-mannosylated-biotin albumin, no bands were recognized in the >207 kDa range by our adherence-associated antibodies. These results suggest that the Acanthamoeba adhesin is not identical to the mannose binding protein of Acanthamoeba but rather is a distinct surface membrane glycoprotein.  相似文献   

10.
The production of monoclonal antibodies (MAbs) to ethylenediamine tetraacetic acid (sodium salt) soluble antigens of Pseudomonas syringae pv. phaseolicola and Xanthomonas campestris pv. phaseoli (fuscans strain) is described. MAbs A6-1 and A6-2 produced to Ps. syringae pv. phaseolicola are pathovar specific. Although MAb XP2 produced to X. campestris pv. phaseoli recognized surface antigens of all strains of this pathovar (including fuscans strains) it cross-reacted specifically with X. campestris pv. malvacearum; it did not react with any other known bacteria or unidentified epiphytes from navy bean seed or leaves. The isotype of both MAbs XP2 and A6-1 is IgG3 whereas that of MAb A6-2 is IgG2a. The reactive antigens are thermostable, but their chemical nature has not been determined.  相似文献   

11.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

12.
Recently, there has been a growing demand for therapeutic monoclonal antibodies (MAbs) on the global market. Because therapeutic MAbs are more expensive than low-molecular-weight drugs, there have been strong demands to lower their production costs. Therefore, efficient methods to minimize the cost of goods are currently active areas of research. We have screened several enhancers of specific MAb production rate (SPR) using a YB2/0 cell line and found that coenzyme-Q10 (CoQ10) is a promising enhancer candidate. CoQ10 is well known as a strong antioxidant in the respiratory chain and is used for healthcare and other applications. Because CoQ10 is negligibly water soluble, most studies are limited by low concentrations. We added CoQ10 to a culture medium as dispersed nanoparticles at several concentrations (Q-Media) and conducted a fed-batch culture. Although the Q-Media had no effect on cumulative viable cell density, it enhanced SPR by 29%. In addition, the Q-Media had no effect on the binding or cytotoxic activity of MAbs. Q-Media also enhanced SPR with CHO and NS0 cell lines by 30%. These observations suggest that CoQ10 serves as a powerful aid in the production of MAbs by enhancing SPR without changing the characteristics of cell growth, or adversely affecting the quality or biological activity of MAbs.  相似文献   

13.
Nine murine monoclonal antibodies (MAb) to the envelope proteins of feline leukemia virus (FeLV) are described. Eight MAb are directed to epitopes of the same molecular species of gp70 and the other MAb is directed to the p15E moiety. Six of the gp70 epitopes are discrete; two are closely associated or overlapping. Four anti-gp70 MAb (2 of IgG2A and 2 of IgG2B subclasses) were directly cytotoxic for FeLV-producer lymphoma cells with cat or with rabbit complement (C). Another MAb (IgG2B), which was not cytotoxic alone, specifically and synergistically increased the cytotoxic effects of both IgG2A MAb. Cytotoxic anti-gp70 MAb also had virus-neutralizing capacity; one MAb recognized a determinant common to all FeLV subgroups (A, B, and C), the others recognized gp70 epitopes not present on subgroup A but common to both B and C subgroups. Competitive inhibition of MAb binding was employed to map spatial distributions of the epitopes, and the results fitted a molecule shaped as an incomplete loop. According to the model, epitopes involved with cytotoxic and virus neutralizing antibody functions were closely associated; the region involved is approximately in the center of the molecule, and it contains epitopes that are variably expressed among individual isolates of FeLV derived from different cat lymphoma cell lines.  相似文献   

14.
Monoclonal antibodies (MAbs) with affinities for molecules on the cell surface of the procaryote Myxococcus xanthus were used in a screening strategy for the isolation of mutants lacking particular cell surface molecules. From a large library of independent mutants created by Tn5 transposon mutagenesis, mutants were isolated which lacked reactivities with MAb 1604 (a MAb specific for a cell surface protein) and MAbs 2600, 1733, 1514, 1412, and 783 (MAbs specific for carbohydrate epitopes on the O antigen of lipopolysaccharide [LPS]). The defect in antibody recognition was shown by genetic crosses and DNA hybridization experiments to be caused by the Tn5 transposon acting as a mutation at a single locus. Quantitative enzyme-linked immunosorbent assays showed that particular mutant strains had no detectable affinity for the specific MAb probe. LPS mutants were resistant to myxophage Mx8, and this provided a selection method for isolating a large number of new LPS mutants. A class of Mx8-resistant mutants lacked reactivity with MAb 1514 and therefore was defective in the O antigen of LPS. A class of Mx1-resistant mutants lacked reactivity with MAb 2254, a MAb specific for a carbohydrate epitope on the core of LPS. A comparison of MAb binding to different mutant strains revealed a principle for mapping epitopes and showed that MAbs 1514 and 2254 recognize side-chain carbohydrates rather than backbone carbohydrates within the LPS molecule.  相似文献   

15.
Human lymphocyte function-associated antigen (LFA)-1, a heterodimeric lymphocyte surface glycoprotein of 177,000 and 95,000 relative molecular weight has been implicated to function in the cytotoxic T lymphocyte (CTL) effector mechanism. Seven mouse hybridoma lines producing monoclonal antibodies (MAb) reactive with this structure were studied. Three unique and 3 partially over-lapping epitopes on human LFA-1 were defined by competitive cross inhibition binding assays using biosynthetically labeled anti-LFA-1 MAb. In contrast, of five rat antimouse LFA-1 MAb, all five recognized a common or shared epitope. An HLA-B7 specific human CTL line expressed 1.1 X 10(5) LFA-1 sites per cell with a direct saturation binding assay. Human CTL expressed two to four times more LFA-1 than peripheral blood lymphocytes or B and T lymphoblastoid cell lines. Titration of each of the anti-LFA-1 MAb in a 51chromium release cytolytic assay revealed quantitative differences in the ability of the different anti-LFA-1 MAb to block cytolysis indicating distinct functional and antigenic epitopes exist on the human LFA-1 molecule. Anti-LFA-1 MAb reversibly inhibited the CTL reaction by slowing the initial rate of cytolysis. These results suggest anti-LFA-1 MAb inhibit CTL function by specific blockade of a functionally relevant molecule.  相似文献   

16.
Certain antibodies from HIV-infected humans bind conserved transition state (CD4 induced [CD4i]) domains on the HIV envelope glycoprotein, gp120, and demonstrate extreme dependence on the formation of a gp120-human CD4 receptor complex. The epitopes recognized by these antibodies remain undefined although recent crystallographic studies of the anti-CD4i monoclonal antibody (MAb) 21c suggest that contacts with CD4 as well as gp120 might occur. Here, we explore the possibility of hybrid epitopes that demand the collaboration of both gp120 and CD4 residues to enable antibody reactivity. Analyses with a panel of human anti-CD4i MAbs and gp120-CD4 antigens with specific mutations in predicted binding domains revealed one putative hybrid epitope, defined by the human anti-CD4i MAb 19e. In virological and immunological tests, MAb 19e did not bind native or constrained gp120 except in the presence of CD4. This contrasted with other anti-CD4i MAbs, including MAb 21c, which bound unliganded, full-length gp120 held in a constrained conformation. Conversely, MAb 19e exhibited no specific reactivity with free human CD4. Computational modeling of MAb 19e interactions with gp120-CD4 complexes suggested a distinct binding profile involving antibody heavy chain interactions with CD4 and light chain interactions with gp120. In accordance, targeted mutations in CD4 based on this model specifically reduced MAb 19e interactions with stable gp120-CD4 complexes that retained reactivity with other anti-CD4i MAbs. These data represent a rare instance of an antibody response that is specific to a pathogen-host cell protein interaction and underscore the diversity of immunogenic CD4i epitope structures that exist during natural infection.  相似文献   

17.
Serotypes O2, O5, and O16 of Pseudomonas aeruginosa are chemically related, and the O antigens of their lipopolysaccharides share a similar trisaccharide repeat backbone structure. Serotype-specific monoclonal antibodies (MAbs) MF71-3, MF15-4, and MF47-4 against the O2, O5, and O16 serotypes, respectively, were isolated. MAb 18-19, which is cross-reactive with all strains of this chemically related serogroup, was also produced. When column chromatography or sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated lipopolysaccharide (LPS) samples from each of the serotypes were probed with the MAbs in Western immunoblots, each of the serotype-specific MAbs interacted only with high-molecular-weight bands of the homologous LPS, with a minimum O-antigen chain length of at least 6 to 10 repeats. In contrast, cross-reactive MAb 18-19 was shown to interact in Western immunoblots with the entire LPS banding pattern except the fastest-running band, which lacks O antigen. Chemical modification of P. aeruginosa LPS by alkali treatment and carboxyl reduction abolished reactions between LPS and MAb 18-19, while reactions of modified LPS with serotype-specific MAbs were not affected. Therefore, cross-reactive MAb 18-19 likely recognizes the chemical backbone structure of the O repeat that is common to all three serotypes of the O2-O5-O16 group, while the O-specific MAbs appeared to recognize LPS epitopes that could be presented when 6 to 10 or more O-antigen repeat units are present on the LPS molecule. Thus, the O-specific LPS epitopes likely involve unique chemical structures, glycosidic linkages, and some order of folding of the O side chains.  相似文献   

18.
Monoclonal antibodies (MAbs) against mutant (T103I) amidase from Pseudomonas aeruginosa were raised by hybridoma technology. To select MAbs suitable for immunoaffinity chromatography, hybridoma clones secreting polyol-responsive MAbs (PR-MAbs) were screened that bind antigen tightly but release under mild and nondenaturing elution conditions. It was found that about 10% of enzyme-linked immunosorbent assay (ELISA)-positive hybridoma produce these MAbs as their ag-ab complex can be disrupted by propylene glycol in the presence of a suitable salt. Two of these hybridoma clones (F6G7 and E2A6) secreting PR-MAbs against mutant amidase were selected for optimization of experimental conditions for elution of amidase by using ELISA elution assay. These hybridoma cell lines secreted MAbs of IgM class that were purified in a single step by gel filtration chromatography, which revealed a single protein band on native polyacrylamide gel electrophoresis (PAGE). Specificity studies of this MAb revealed that it recognized specifically a common epitope on mutant and wild-type amidases as determined by direct ELISA. This MAb exhibited a higher affinity for denatured forms of wild-type and mutant amidases than for native forms as revealed by affinity constants (K), suggesting that it recognizes a cryptic epitope on an amidase molecule. Furthermore, MAb E2A6 inhibited about 60% of wild-type amidase activity, whereas it activated about 60% of mutant amidase (T103I) activity. The data presented in this work suggest that this MAb acts as a very useful probe to detect conformational changes in native and denatured amidases as well as to differentiate wild-type and mutant (T103I) amidases.  相似文献   

19.
Geetha P. Bansal   《Biologicals》2007,35(4):367-371
Passive immunization with monoclonal antibodies (MAbs) has been shown to prevent a wide variety of diseases. Currently, there are no MAb products that are licensed for use for immunotherapy or immunoprophylaxis against infection by HIV. However, there are several rational arguments that can be advanced for the use of a passive immunization approaches for counteracting HIV much as for other diseases especially with respect to mother-to-child transmission (MTCT) of HIV and immediate post-exposure situations. Several arguments questioning the feasibility of the approach based on availability of effective drugs, high cost of production and distribution of the MAbs among others, also get raised. It seems that the field now is looking at some promising MAbs as well as several alternate ways to manufacture antibodies and which hopefully may positively affect cost-related issues. This summary of a workshop held to assess the role of MAbs in the treatment and prevention of HIV/AIDS provides a fairly comprehensive analysis of the usefulness of MAb technology for future HIV/AIDS research.  相似文献   

20.
S W Ludmerer  D Benincasa    G E Mark  rd 《Journal of virology》1996,70(7):4791-4794
Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号