首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Phylogenetic relationships within the genus Muscisaxicola, a primarily Andean group of tyrant-flycatchers, were studied using complete sequences of the mitochondrial genes COII and ND3. Relationships among Muscisaxicola species were found to differ substantially from those of previous views, suggesting convergence in traditional avian taxonomic characters within the genus. The 11 species of large, gray, "typical" Muscisaxicola flycatchers (including M. grisea, newly restored to species status) formed a distinct clade, consisting of two major groups: a clade of 6 species breeding primarily in the central Andes and a clade of 5 species breeding primarily in the southern Andes. The other 2 species traditionally placed in this genus, M. fluviatilis, an Amazonian species, and M. maculirostris, were both rather divergent genetically from the typical species, although M. maculirostris may be the sister taxon to the typical clade. The patterns of sympatry exhibited by Muscisaxicola species in the high Andes appear to be the consequence of speciation and secondary contact within regions of the Andes, rather than a result of dispersal between regions. Diversification of the typical Muscisaxicola species appears to have occurred during the middle and late Pleistocene, suggesting generally that taxa of the high Andes and Patagonia may have been greatly influenced by mid-to-late Pleistocene events. There were likely several independent developments of migration within this genus, but migration is probably ancestral in the southern clade, with subsequent loss of migration in two taxa.  相似文献   

2.
Species distributions are a product of contemporary and historical forces. Using phylogenetic and geographic data, we explore the timing of and barriers to the diversification of the Andean butterfly genus Lymanopoda (Nymphalidae, Satyrinae). Clade and species level diversification is coincident with Andean orogeny and Pleistocene glaciation cycles. Lymanopoda has primarily diversified within elevational bands, radiating horizontally throughout the Andes with occasional speciation across elevational boundaries, often associated with ecotones. Narrow elevational ranges and infrequent speciation into adjacent elevational strata suggest that expansion across elevational gradients is relatively difficult. These results are similar to those found in studies of other Andean taxa.  相似文献   

3.
The monophyletic Morpho sulkowskyi butterfly group, endemic of Andean cloud forests, was studied to test the respective contributions of Mio‐Pliocene intense uplift period and Pleistocene glacial cycles on Andean biodiversity. We sampled nine taxa covering the whole geographical range of the group. Two mitochondrial and two nuclear genes were analysed using a Bayesian method. We established a dated phylogeny of the group using a relaxed clock method and a wide‐outgroup approach. To discriminate between two hypotheses, we used a biogeographical probabilistic method. Results suggest that the ancestor of the M. sulkowskyi group originated during the Middle–Late Miocene uplift of the Eastern Cordillera in northern Peru. Biogeographical inference suggests that the Msulkowskyi and Morpho lympharis clades diverged in the northern Peruvian Andes. The subsequent divergences, from the Late Miocene to the Late Pliocene, should have resulted from a dispersal towards the Northern Andes (M. sulkowskyi clade), after the closure of the West Andean Portal separating the Central and Northern Andes, and a southwards dispersal along the Peruvian and Bolivian Eastern Cordilleras (M. lympharis clade). Only a few divergences occurred at the very end of the Pliocene or during the Pleistocene, a period when the more recent uplifts interfered with Pleistocene glacial cycles.  相似文献   

4.
The genus Minidiscus comprises a group of ecologically-important and globally-distributed planktonic diatoms that are characterized by their small cell size, high mantle and processes more or less concentrated in the valve center. Monoclonal strains were established from collections along the Chinese coast. In the phylogenetic analyses inferred from a LSU and SSU dataset, six Minidiscus species clustered into two well-supported clades. The first clade was located within a larger clade formed mainly by Thalassiosira taxa, and the second clade appeared as sister to a clade comprising the genus Skeletonema. Hence, presently known Minidiscus do not form a monophyletic clade, but rather make up a phenotypic grouping. Based on the morphology of the type species, M. trioculatus, as well as morphological characters of all taxa in the clade with M. trioculatus, Minidiscus is characterized by having fultoportula(e) in the valve center or sub-centered close to a single rimoportula, and the cells are usually cylindrical. Mediolabrus gen. nov. is proposed to accommodate species in the second clade. The main difference between Minidiscus and Mediolabrus is the type of process found in the valve (sub-)center, with fultoportula(e) close to a rimoportula in the former, and only a single rimoportula in the latter. According to the above criteria, previously described Minidiscus taxa were re-examined, and either retained in Minidiscus or transferred to Mediolabrus.  相似文献   

5.
The evolution of Neotropical birds of open landscapes remains largely unstudied. We investigate the diversification and biogeography of a group of Neotropical obligate grassland birds (Anthus: Motacillidae). We use a multilocus phylogeny of 22 taxa of Anthus to test the hypothesis that these birds radiated contemporaneously with the development of grasslands in South America. We employ the R package DDD to analyze the dynamics of Anthus diversification across time in Neotropical grasslands, explicitly testing for shifts in dynamics associated with the Miocene development of grasslands, the putative Pleistocene expansion of arid lowland biomes, and Pleistocene sundering of Andean highland grasslands. A lineage‐through‐time plot revealed increases in the number of lineages, and DDD detected shifts to a higher clade‐level carrying capacity during the late Miocene, indicating an early burst of diversification associated with grassland colonization. However, we could not corroborate the shift using power analysis, probably reflecting the small number of tips in our tree. We found evidence of a divergence at ~1 Mya between northern and southern Amazonian populations of Anthus lutescens, countering Haffer's idea of Pleistocene expansion of open biomes in the Amazon Basin. We used BioGeoBears to investigate ancestral areas and directionality of colonization of Neotropical grasslands. Members of the genus diversified into, out of, and within the Andes, within‐Andean diversification being mostly Pleistocene in origin.  相似文献   

6.
We studied the phylogeography and population history of the white wagtail Motacilla alba, which has a vast breeding range, covering areas with different Pleistocene climatic histories. The mitochondrial NADH dehydrogenase subunit II gene (ND2) and Control Region (CR) were analyzed for 273 individuals from 45 localities. Our data comprised all nine subspecies of white wagtail. Four primary clades were inferred (M, N, SW and SE), with indications of M. grandis being nested within M. alba. The oldest split was between two haplotypes from the endemic Moroccan M. a. subpersonata (clade M) and the others, at 0.63–0.96 Mya; other divergences were at 0.31–0.38 Mya. The entire differentiation falls within the part of the Pleistocene characterized by Milankovitch cycles of large amplitudes and durations. Clade N was distributed across the northern Palearctic; clade SW in southwestern Asia plus the British Isles and was predicted by Ecological niche models (ENMs) to occur also in central and south Europe; and clade SE was distributed in central and east Asia. The deep divergence within M. a. subpersonata may reflect retention of ancestral haplotypes. Regional differences in historical climates have had different impacts on different populations: clade N expanded after the last glacial maximum (LGM), whereas milder Pleistocene climate of east Asia allowed clade SE a longer expansion time (since MIS 5); clade SW expanded over a similarly long time as clade SE, which is untypical for European species. ENMs supported these conclusions in that the northern part of the Eurasian continent was unsuitable during the LGM, whereas southern parts remained suitable. The recent divergences and poor structure in the mitochondrial tree contrasts strongly with the pronounced, well defined phenotypical differentiation, indicating extremely fast plumage divergence.  相似文献   

7.
We investigated the phylogenetic relationships of 12 species within a single genus of neotropical passerine (Poospiza) using 849 bp (283 codons) of the cytochrome b mitochondrial gene. We further explored evolutionary affinities of these taxa using sequence from an additional 47 thraupine (tanagers) and 7 emberizine (sparrows and buntings) genera, members of the predominantly New World family Emberizidae. Poospiza have traditionally been considered part of the emberizine radiation. However, our analyses suggest that members of this genus are more closely related to some thraupine lineages than they are to the other neotropical emberizine genera included in our study (Atlapetes, Embernagra, Melopyrrha, Phrygilus, Saltatricula, Tiaris). Although member taxa are closely related, the genus Poospiza appears to be paraphyletic with representatives of 6 thraupine genera (Cnemoscopus, Cypsnagra, Hemispingus, Nephelornis, Pyrrhocoma, Thylpopsis) interspersed among four well-supported Poospiza clades. The majority of species within this Poospiza–thraupine clade have geographic ranges that are exclusive to, or partially overlap with, the Andes Mountains. It is probable that these mountains have played an important role in driving cladogenesis within this group. Sequence divergence (transversions only; mean 4.7 ± 1.3%) within the clade suggests that much of this diversification occurred within the late Miocene and Pliocene, a period coincident with major orogenic activity in central-western South America.  相似文献   

8.
Molecular phylogenetic analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and the 5.8S gene were used to infer a phylogeny among the ten recognized taxa of Froelichia in North America. Analyses using both maximum parsimony (MP) and maximum-likelihood (ML) depicted a low level of sequence divergence though it was sufficient in most cases to differentiate taxa. Froelichia xantusii, a species restricted to southern Baja California was shown to be the basalmost member of the group subtending three clades. Two of the clades received good bootstrap support in the MP analysis and corresponded to a genetically homogeneous F. interrupta, and a clade comprising the two species F. latifolia and F. texana. A third clade receiving low bootstrap support contained F. floridana, F. gracilis, F. arizonica, and F. drummondii. Species diversity within the genus was centered within the Tamaulipan Brushland region of north-east Mexico and the southern portion of the US state of Texas where taxa from two of the three principal clades occurred, indicating a region of high speciation and diversification within the genus.  相似文献   

9.
Quintero, E., Ribas, C. C. & Cracraft, J. (2012). The Andean Hapalopsittaca parrots (Psittacidae, Aves): an example of montane‐tropical lowland vicariance. —Zoologica Scripta, 42, 28–43. We describe a phylogenetic and biogeographical pattern connecting high montane biotas to those of the lowlands, as exemplified by the exclusively montane parrot genus Hapalopsittaca and its lowland sister genus Pyrilia, both nested within Tavares et al.’s “amazons and allies” clade. As Hapalopsittaca is the only genus within the “amazons and allies” clade that is exclusively distributed in the Andes, the optimization leads to the inference that the ancestral distribution of the branch leading to Pyrilia + Hapalopsittaca was lowland. Museum specimens were examined to determine basal diagnosably distinct taxonomic units. Based on this analysis, mitochondrial sequences (cyt b and ND2 genes) from 17 individuals, mostly from toe pads, and representing all basal taxa within Hapalopsittaca, were obtained. A divergence‐dating analysis using both nuclear (RAG‐1) and mitochondrial (cyt b) genes was conducted to explore whether the uplift of the Andes coincides temporarily with the origin of this montane group, and thus might be causally linked to its origin. Molecular dating estimates the split between Hapalopsittaca and Pyrilia to have occurred between 6.6 and 8.0 Myr; thus, the timing of this highland/lowland disjunction is consistent with that of the final uplift of the Central Andes, supporting a hypothesis of vicariance due to Andean uplift. These results suggest that the taxonomic assembly of montane biotas may be, at least in part, explained by events of Earth history rather than by long‐distance dispersal and colonization. Diversification within Hapalopsittaca and the origin of current species are more recent in time and probably are related to Pleistocene climatic oscillations, as has been shown in other montane groups.  相似文献   

10.
The southern Andean clade of Valeriana provides an excellent model for the study of biogeography. Here we provide new data to help clarify phylogenetic relationships among the South American valerians, with special focus on taxa found in the southern Andes. We found that the southern Andean taxa formed a clade in maximum likelihood and maximum parsimony analyses, and used a Bayesian relaxed clock method to estimate divergence times within Valerianaceae. Our temporal results were similar to other studies, but we found greater variance in our estimates, suggesting that the species of Valeriana have been on the South American continent for some time, and have been successful at exploiting new niche opportunities that reflects the contemporary radiation. Regardless of the time frame for the radiation of the clade, the uptick in the rate of diversification in Valerianaceae appears correlated with a dispersal event from Central to South America. The appearance of Valeriana in the southern Andes (13.7 Ma) corresponds with the transition from closed forest on the western side of the Andes in central Chile to a more open Mediterranean woodland environment. This would suggest that the high species richness of Valerianaceae in South America is the result of multiple, smaller radiations such as the one in the southern Andes, that may or may not be geographically isolated. These smaller radiations may also be driven by species moving into new biomes (migration from a temperate to a more Mediterranean-type climate and into alpine). The degree to which different ecological and geological factors interact to drive diversification is difficult to ascertain. Likewise, without a better-resolved phylogeny it is impossible to determine the directionality of dispersal in this group; did they colonize the southern Andes first, then move northward as the central Andean alpine habitat became more widely available or vice versa?  相似文献   

11.
Aim We test hypotheses regarding the origin of diversity and patterns of species richness in and around the New Zealand Southern Alps with 25 species of Chionochloa (Poaceae, Danthonioideae). Location New Zealand. Methods We inferred a well‐resolved and mostly robustly supported chloroplast phylogeny based on multiple DNA sequence markers (trnT–L–F, rpl16, trnD–psbM, atpB–rbcL, matK and ndhF), sampling 92% of the recognized species and 82% of the subspecific taxa. Nuclear ribosomal internal transcribed spacer sequences were also sampled, but proved uninformative. Biogeographic reconstruction and character optimization were done using both parsimony and likelihood approaches, and molecular dating used relaxed clock approaches. Results Most of the species diversity in Chionochloa stemmed from a common ancestor in the southern South Island with subsequent dispersal between areas. One clade of apparently cryptic taxa diversified within the central South Island ‘endemism gap’, persisting there throughout at least the latter half of the Pleistocene. Exclusively alpine and other habitat specialist species originated independently, the former relatively recently (between 7.6 Ma and the present). Main conclusions The phylogeny of Chionochloa and other published phylogenies of New Zealand plant groups demonstrate that the higher degree of endemism in the north and south of the New Zealand South Island relative to a central endemism gap cannot be explained by Alpine Fault displacement. Furthermore, our results suggest that if extinctions resulting from glaciations played a role in the origin of the central endemism gap, their impact was less than might be presumed on the basis of the distribution of taxa as they are currently defined. The diversification of Chionochloa and a number of New Zealand plant groups, such as Ranunculus, was contemporaneous with the initiation of the uplift of the Southern Alps. In contrast to patterns of diversifications within the alpine regions typical of the hyperdiverse Andes, exclusively alpine species in New Zealand arose independently from ancestors distributed in more lowland areas. Similarly, habitat specialists in Chionochloa arose independently from more generalist ancestors. Thus, although diversification in these groups may have been stimulated by mountain building and Pleistocene climatic oscillations, cladogenesis did not occur within the high alpine habitat itself.  相似文献   

12.
The fluvicoline New World flycatchers (subfamily Fluvicolinae, family Tyrannidae) inhabit a broad range of forest and non‐forest habitats in all parts of the New World. Using a densely sampled phylogeny we depict the diversification and expansion of this group in time and space. We provide evidence that a shift in foraging behaviour allowed the group to rapidly expand in a wide range of tropical and subtropical habitats in South America. The results support that four main clades expanded into and specialized to distinct habitats and climates (closed to open, and warm to cold), respectively, and subsequently underwent vicariant speciation within their respective ecoregions. The group soon reached a significant species diversity over virtually all of South and North America, and with parallel trajectories of speciation slow‐down in all four clades. The genus Muscisaxicola is an exception, as it invaded the most inhospitable and barren environments in the Andes where they underwent rapid diversification in the Plio‐Pleistocene.  相似文献   

13.
Phylogenetic relationships within the genus Pieris (Ericaceae) were investigated based on the rbcL and matK genes along with five spacer sequences of chloroplast DNA to address questions regarding the phylogeography of the genus in association with insular plants on the Ryukyu Islands. The most parsimonious trees indicated that P. floribunda from eastern North America is a sister taxon to the remaining taxa examined, and suggested that the East Asian taxa examined are monophyletic. A morphologically cohesive group, section Pieris, was revealed to be paraphyletic. Within the East Asian clade, insular endemics from the Ryukyu Islands, Taiwan, and mainland Japan formed a sister group to P. formosa from the Himalayas and southern China. Our data suggest that the insular endemics of the Ryukyu Islands and Taiwan arose via allopatric divergence as a result of a paleogeographical land configuration of a landbridge during the early–middle Pleistocene in the Quaternary Period.  相似文献   

14.
We investigated the phylogenetic relationships within the genus Cardiandra based on plastid DNA sequences. The phylogenetic tree showed that Cardiandra populations from the Ryukyu Islands (Japan) and Taiwan were monophyletic (Ryukyu–Taiwan clade), whereas taxa from China and mainland Japan were sisters to this clade. The divergence time between the Ryukyu–Taiwan clade and the other species was estimated to be 0.082 MYA, i.e., the late Pleistocene. The infrageneric and/or infraspecific differentiation of Cardiandra is estimated to have depended largely on allopatric differentiation caused by the presence or division of the past landbridge of the Ryukyu Islands, which connected mainland Japan to the Asian Continent during the Quaternary.  相似文献   

15.
The amphibian genus Telmatobius is a diverse group of species that inhabits the Andes. This study analysed the phylogenetic relationships of 19 species described from the central Andes of Chile and Bolivia, and 12 undescribed populations of Chile. A molecular phylogeny based on mitochondrial DNA 16S and cytochrome b shows that the Chilean species belong to three groups: (1) the Telmatobius marmoratus group, widespread in the Chilean and Bolivian Altiplano; (2) the Telmatobius hintoni group, including the species Telmatobius philippii, Telmatobius fronteriensis, and Telmatobius huayra, occurring in the south‐western Altiplano of Chile and Bolivia, and (3) the Telmatobius zapahuirensis group, a new clade which also includes Telmatobius chusmisensis, Telmatobius dankoi, and Telmatobius vilamensis, restricted to western slopes of the Andes, and which was recovered as more closely related to the T. hintoni group than the T. marmoratus group. The divergence times between clades were traced to the late Pleistocene. The molecular phylogeny also confirmed that the groups of the Altiplano and western Andes slopes form a clade separated from the species that inhabit the eastern Andes (Telmatobius verrucosus and Telmatobius bolivianus groups), supporting the forest origin of the Altiplano groups proposed by several previous authors. © 2014 The Linnean Society of London  相似文献   

16.
We present the first extensive and integrative analysis of niche evolution based on climatic variables and a dated molecular phylogeny of a heterogeneous avian group of Southeast Asian scimitar babblers of the genus Pomatorhinus. The four main clades of scimitar babblers have species that co-occur in similar areas across southern Asia but some have diverged at different timeframes, with the most recently evolved clade harboring the highest number of species. Ecological niche models and analysis of contributing variables within a phylogenetic framework indicate instances of convergent evolution of members of different clades onto similar ecological parameter space, as well as divergent evolution of members from within clades. Pomatorhinus species from different clades occupying Himalayan foothills show convergence towards similar climatic tolerances, whereas within a clade, allopatric sister-species occurring in the Himalayas have diverged to occupy different climatic parameter spaces. Comparisons of climatic tolerances of Himalayan foothills taxa with species distributed further south in Assam/Burma and Burma/Thailand indicate convergence towards similar parameter spaces in several climatic variables. Niche overlap was observed to be lower among species of the youngest clade (ruficollis) and higher among species of older clades (ferruginosus). Analysis of accumulation of ecological disparity through time indicates rapid divergence within recent time frames. As a result, Himalayan taxa originating at different temporal scales within the four main scimitar babbler clades have differentiated ecologically only in recently diverged taxa. Our study suggests that the repeated orogenic and climatic fluctuations of the Pliocene and Pleistocene within mainland Southeast Asia served as an important ecological speciation driver within scimitar babblers, by providing opportunities for rapid geographic expansion and filling of novel environmental niches.  相似文献   

17.
The genus Fusicladium s. lat. (incl. Pollaccia and Spilocaea) was phylogenetically analysed using ITS nrDNA sequences. Pollaccia and Spilocaea did not form monophyletic groups of their own, but were intermingled between Fusicladium species, together with which they formed a monophyletic clade. Thus, Pollaccia and Spilocaea should be included in a wider genus concept of Fusicladium, constituting a morphologically variable genus. Furthermore, all Venturia and Fusicladium isolates clustered together on the bases of available ITS data, providing support for the monophyly of the anamorphic genus Fusicladium and the teleomorphic genus Venturia. Within this clade several subclades can be recognized. All taxa on the host family Salicaceae were found in one subclade. Three other subclades comprised taxa on Rosaceae whereas taxa on other host families all clustered separately. Geographic specializations were not observed. Two examples of host switching could be demonstrated, but these were confined to instances involving host species belonging to the same family. Fusicladium convolvularum and F. effusum, two species with unknown teleomorphs, clustered within the Fusicladium/Venturia clade, supporting the correct placement of these taxa in Fusicladium. The placement of Pseudocladosporium hachijoense within the family Venturiaceae was also supported.  相似文献   

18.
Sylvietta is a broadly distributed group of African species inhabiting a wide range of habitats and presents an interesting opportunity to investigate the historic mechanisms that have impacted the biogeography of African avian species. We collected sequence data from 50 individuals and used model‐based phylogenetic methods, molecular divergence estimates and ancestral area estimates to construct a time‐calibrated phylogeny and estimation of biogeographic history. We estimate a southern African origin for Sylvietta, with an initial divergence splitting the genus into two clades. The first consists of arid‐adapted species, with a southern African origin and subsequent diversification north into Ethiopia–Somalia. The second clade is estimated as having a Congolian forest origin with an eastward pattern of colonization and diversification as a result of Plio‐Pleistocene forest dynamics. Additionally, two members of the genus Sylvietta display interesting patterns of intraspecific diversification. Sylvietta rufescens is an arid‐adapted species inhabiting southern Africa, and we recover two subclades with a divergence dating to the Pleistocene, a unique pattern for avian species which may be explained via isolation in arid habitat fragments in the early Pleistocene. Second, Sylvietta virens, a species endemic to Afro‐tropical forests, is recovered with geographically structured genetic diversification across its broad range, an interesting result given that recent investigations of several avian forest species have found similar and substantial geographically structured genetic diversity relating to Plio‐Pleistocene forest fragmentation. Overall, Plio‐Pleistocene habitat cycling played a significant role in driving diversification in Sylvietta, and this investigation highlights the substantial impact of climate‐driven habitat dynamics on the history of sub‐Saharan species.  相似文献   

19.
Among Palearctic warblers of the genus Phylloscopus those species that breed farther north occupy larger geographical ranges than those which breed farther south (Rapoport's rule). We suggest that much of this pattern is a consequence of the differential ability of species to occupy areas rendered inhospitable during the Pleistocene. In support of this suggestion, the midpoint of breeding range in a north-south direction has been an exceptionally labile trait through evolutionary time. Comparisons of ecological attributes of those species breeding in the Himalayas with close relatives in Siberia implies a role for habitat tracking in determining which species have been able to colonize northern areas; hypotheses based on climate and climatic variability have less support. In addition there is a likely role for geographic barriers and/or biotic interactions in preventing some taxa from spreading from small southern ranges.  相似文献   

20.
Haplodiploidy is a highly unusual genetic system that has arisen at least 17 times in animals of varying lifestyles, but most of these haplodiploid lineages remain relatively poorly known. In particular, the ecological and genetic circumstances under which haplodiploidy originates have been difficult to resolve. A recent molecular‐phylogenetic study has resolved the phylogenetic position of the haplodiploid clade of scolytine beetles as the sister group of the genus Dryocoetes. Haplodiploid bark beetles are remarkable in that the entire clade of over 1300 species are apparently extreme (sib‐mating) inbreeders, most of which cultivate fungi for food while some attack phloem, twigs or seeds. Here we present a much more detailed molecular‐phylogenetic study of this clade. Using partial sequences of elongation factor 1‐alpha and the mitochondrial small ribosomal subunit (12S), we reconstructed the phylogeny for 48 taxa within the haplodiploid clade, as well as two species of the diplodiploid sister genus Dryocoetes. Results indicate that the genus Ozopemon is the basal lineage of die haplodiploid clade. Since Ozopemon, Dryocoetes, and other outgroups are phloem‐feeding, this strongly suggest that haplodiploidy and inbreeding evolved in a phloem feeding ancestor. Following the divergence of Ozopemon there is a series of extremely short internodes near the base of the clade, suggesting a very rapid rate of diversification in early Miocene (based on fossil evidence and sequence divergence). Among the many substrates for breeding and food resources utilized within this species‐rich clade, the cultivation of yeast‐like ambrosia fungi in tunnels deep into the wood predominates (nearly 90% of the species). The number of transitions to feeding on such fungi was few, possibly only one, and is perhaps an irreversible transition. The habit of feeding on fungi cultured in xylem makes it possible for the beetles to use a great variety of plant taxa. This extreme resource generalism, in conjunction with the colonization advantage conferred by haplodiploidy and inbreeding, may have promoted the rapid diversification of this clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号