首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although organism-specific factors related to individual indicator organisms have hampered the use of bioassays for the evaluation of environmental risk in practice, the importance of understanding organism-specific factors when selecting model organisms has also not yet been fully recognized. In this work, genotoxicity was evaluated in the ciliated protozoa, Euplotes vannus and Pseudokeronopsis rubra, when exposed to graded doses of nitrofurazone for several discrete durations. Genotoxicity was expressed based on the LD50 and was determined by assessing DNA strand breaks (through alkaline comet assay) and DNA–protein crosslinks (DPCs), by means of a KCl–SDS precipitation assay. It was found that E. vannus generally had lower LD50's than P. rubra (P < 0.05), and that the LD50 values decreased in both ciliates as the exposure durations increased. Compared to the control groups, the nitrofurazone treated E. vannus generally produced more DNA strand breaks (P < 0.05), but for DPCs (P > 0.05). The relationship between these parameters was reversed in the case of P. rubra. Biphasic dose–response relationships were generally detected between nitrofurazone and genotoxicity parameters, however, parameters for DNA strand breaks presented significantly positive correlations between each other (P < 0.05), but showed nearly no significant correlations with DPC induction. In brief, our findings confirmed nitrofurazone-induced genotoxicity and the important role of organism-specific factors in the selection of model organisms from ciliated protozoa for environmental monitoring and risk assessment in aquaculture.  相似文献   

2.
Cleistanthin A is a novel anticancer agent isolated from Cleistanthus collinus (Rox B). It caused chromatid aberrations in a dose dependent manner. However, the concentrations that induced the aberrations, neither affected viability nor induced DNA strand breaks. Only at higher concentrations and after long exposure, DNA strand breaks were observed. Cleistanthin A induced apoptosis in Chinese hamster ovary (CHO) cells, in cervical carcinoma (Si Ha) cells and in a p53 deficient cell line K562. Cleistanthin A-induced cell death was low in bcl-2 transfected cells. Cleistanthin A inhibited the incorporation of [3H]thymidine into DNA; however, it did not affect the transport of [3H]thymidine into these cells. These studies indicate that the cytotoxic effects of cleistanthin A are mediated by the inhibition of DNA synthesis, induction of DNA damage and apoptosis.  相似文献   

3.
In situ presence of numerous DNA strand breaks is a typical feature of apoptotic cells. Selective DNA strand break induction by photolysis (SBIP) at sites that contain incorporated halogenated DNA precursors has recently been proposed as a method of analysing DNA replication. Detection of DNA strand breaks, thus, enables one to identify apoptotic and/or DNA replicating cells. The current methods for DNA strand break labelling rely on the use of exogenous terminal deoxynucleotidyl transferase which either directly attaches the fluorochrome conjugated triphosphodeoxynucleotides to 3′OH ends in the breaks, or indirectly labels 3′OH ends with digoxygenin or biotin conjugated triphosphodeoxynucleotides. A limitation of these methodologies, especially restricting their routine application in the clinic, is high cost of reagents. In the present study we have tested whether relatively simple compound BrdUTP, which is approximately three orders of magnitude less expensive than dUTP conjugated to digoxygenin, can be used as marker of DNA strand breaks. Apoptosis of HL-60 cells was induced by DNA topoisomerase I inhibitor camptothecin. The incorporated BrdUTP was detected by fluoresceinated anti-BrdUrd MoAb. Cellular fluorescence was measured by flow cytometry as well as by Laser Scanning Cytometer (LSC). The data show that intensity of DNA strand break labelling with BrdUTP was nearly four- and two-fold higher than that obtained with the indirect labelling using biotin- or digoxygenin-conjugated dUTP, respectively, and over eight-fold higher than in the case of direct labelling with the fluorochrome (fluorescein or BODIPY)-conjugated deoxynucleotides. The increased labelling of DNA strand breaks with BrdUTP may reflect more efficient incorporation of this precursor by terminal transferase, compared to the nucleotides with bulky fluorochrome conjugates. DNA strand break labelling with BrdUTP, thus, offers a possibility of more sensitive (and at lower cost) detection of apoptotic or DNA replicating cells, compared to the alternative methods of DNA strand break labelling.  相似文献   

4.
Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.  相似文献   

5.
Hiom K 《DNA Repair》2010,9(12):1256-1263
The repair of DNA double strand breaks (dsb) is important for maintaining the physical and genetic integrity of the genome. Moreover, in humans it is associated with the prevention of diseases such as immune deficiencies and cancer. This review briefly explores the fundamental strategies for repairing dsb, examines how cells maximize the fidelity of dsb repair in the cell cycle and discusses the requirements for dsb repair in the context of chromatin.  相似文献   

6.
Genetic approaches have provided evidence that DNA end-joining problems serve an essential role in neuronal survival during development of mammalian embryos. In the present study, we tested whether the DNA repair enzyme, DNA dependent protein kinase, plays an important role in the survival of cerebral cortical neurons in mice. DNA-PK is comprised of a DNA-binding subunit called Ku and a catalytic subunit called DNA-PKcs. In mice with the scid mutation, DNA-PKcs is truncated near the kinase domain, which causes loss of kinase activity. We compared the spatial and temporal aspects of neuronal cell death in scid versus isogenic wild-type embryos and found a significant increase in dying cells in scid mice, as assessed by nuclear changes, DNA fragmentation and caspase-3 activity. Additional biochemical and immunocytochemical studies indicated that of several DNA repair enzymes investigated, only PARP was increased in scid mice, possibly in response to elevated DNA strand breaks.  相似文献   

7.
DNA strand breaks, NAD metabolism, and programmed cell death   总被引:16,自引:0,他引:16  
An intimate relationship exists between DNA single-strand breaks, NAD metabolism, and cell viability in quiescent human lymphocytes. Under steady-state conditions, resting lymphocytes continually break and rejoin DNA. The balanced DNA excision-repair process is accompanied by a proportional consumption of NAD for poly(ADP-ribose) synthesis. However, lymphocytes have a limited capacity to resynthesize NAD from nicotinamide. An increase in DNA strand break formation in lymphocytes, or a block in DNA repair, accelerates poly(ADP-ribose) formation and may induce lethal NAD and ATP depletion. In this way, the level of DNA single-strand breaks in the lymphocyte nucleus is linked to the metabolic activity of the cytoplasm. The programmed removal of lymphocytes (and perhaps of other cells) with damaged DNA, may represent a novel physiologic function for poly(ADP-ribose)-dependent NAD cycling.  相似文献   

8.
The DNA-dependent protein kinase (DNA-PK) is a DNA-end activated protein kinase that is required for efficient repair of DNA double-strand breaks (DSBs) and for normal resistance to ionizing radiation. DNA-PK is composed of a DNA-binding subunit, Ku, and a catalytic subunit, DNA-PKcs (PRKDC). We have previously shown that PRKDC is activated when the enzyme interacts with the terminal nucleotides of a DSB. These nucleotides are often damaged when DSBs are introduced by anticancer agents and could therefore prevent recognition by DNA-PK. To determine whether DNA-PK could recognize DNA strand breaks generated by agents used in the treatment of cancer, we damaged plasmid DNA with anticancer drugs and ionizing radiation. The DNA breaks were tested for the ability to activate purified DNA-PK. The data indicate that DSBs produced by bleomycin, calicheamicin and two types of ionizing radiation ((137)Cs gamma rays and N(7+) ions: high and low linear energy transfer, respectively) activate DNA-PK to levels matching the kinase activation obtained with simple restriction endonuclease-induced DSBs. In contrast, the protein-linked DSBs produced by etoposide and topoisomerase II failed to bind and activate DNA-PK. Our findings indicate that DNA-PK recognizes DSBs regardless of chemical complexity but cannot recognize the protein-linked DSBs produced by etoposide and topoisomerase II.  相似文献   

9.
Synthetic eumelanin prepared by autooxidation of D,L-DOPA causes DNA strand breaks, as determined by alkaline elution after cell lysis with detergent and proteolysis, in B16CL4 mouse melanoma cells. The melanin is toxic to the cells in the range of doses that causes strand breaks. When the melanin was incubated with the cells at 37 degrees C in tissue culture medium, it was maximally effective after 15 to 20 min at causing strand breaks in the DNA. The extent of damage is concentration dependent, but the effect plateaus at 1 mg/ml. The nature of the interaction of the cellular DNA with melanin is consistent with strand breaks, not DNA-DNA crosslinks. The strand break damage is repaired, even in the continued presence of melanin, but repair is more rapid if the cells are washed and the melanin is removed. The form of the melanin is important for obtaining the effect. Sonication for 3 min abrogates the effect to a considerable extent, and repeated cycles of sonication can completely destroy the activity. Lost activity returns slowly with storage at 4 degrees C. Melanin is more effective at damaging DNA in a protein-free medium. It is also DNA-damaging at 4 degrees C, but less so than at 37 degrees C. Preliminary studies indicate that the strand breaks caused by melanin are additive with those caused by ionizing radiation. The extent of DNA strand breaks and alkali-labile sites caused by several other melanins was also determined. Some melanins did not cause frank strand breaks, but were active in causing alkali-labile sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ho IC  Yih LH  Kao CY  Lee TC 《Mutation research》2000,452(1):41-50
Numerous reports have shown that oxidative stress is involved in arsenite-induced genetic damage. Arsenite is also a potent inducer of heme oxygenase (HO)-1. To understand whether HO-1 could function as a cellular antioxidant and protect cells from arsenite injury, the effects of tin-protoporphyrin (SnPP), a competitive inhibitor of HO-1, on arsenite-induced genetic damage were examined in human skin fibroblasts (HFW). In the present study, we found that SnPP at 100 microM significantly potentiated arsenite-induced cytotoxicity, DNA strand breaks (assayed by alkaline single cell gel electrophoresis(SCGE)), and chromatid breaks. Although arsenite alone mainly induced kinetochore-plus micronuclei (K(+)-MN), SnPP only synergistically enhanced kinetochore-negative micronuclei (K(-)-MN). The increase in K(-)-MN by SnPP cotreatment was consistent with the increase in DNA strand breaks and chromatid breaks caused by SnPP. However, at higher arsenite doses, K(+)-MN was significantly reduced by SnPP. Pretreatment of HFW cells with hemin, an inducer of HO-1, significantly attenuated the cytotoxicity of arsenite. Therefore, the present results suggest that HO-1 induction by arsenite plays certain roles in protecting cells from arsenite-induced injury.  相似文献   

11.
RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced (+) strand of the duplex within a 15-base pair region of the heterology/homology junction. Breakage also requires recA protein, ATP hydrolysis, and homologous sequences 3' to the heterology. Although the location of the breaks and the observed requirements clearly indicate a major role for recA protein in this phenomenon, the molecular mechanism is not yet clear. The breakage may reflect a DNA structure and/or some form of structural stress within the DNA during recA protein-mediated DNA pairing which either exposes the DNA at this precise position to the action of a contaminating nuclease or induces a direct mechanical break. We also find that when heterology is located at the 3' end of the linear duplex, strand exchange is halted (without DNA breakage) about 500 base pairs from the homology/heterology junction.  相似文献   

12.
In mammalian zygotes, the 5‐methyl‐cytosine (5mC) content of paternal chromosomes is rapidly changed by a yet unknown but presumably active enzymatic mechanism. Here, we describe the developmental dynamics and parental asymmetries of DNA methylation in relation to the presence of DNA strand breaks, DNA repair markers and a precise timing of zygotic DNA replication. The analysis shows that distinct pre‐replicative (active) and replicative (active and passive) phases of DNA demethylation can be observed. These phases of DNA demethylation are concomitant with the appearance of DNA strand breaks and DNA repair markers such as γH2A.X and PARP‐1, respectively. The same correlations are found in cloned embryos obtained after somatic cell nuclear transfer. Together, the data suggest that (1) DNA‐methylation reprogramming is more complex and extended as anticipated earlier and (2) the DNA demethylation, particularly the rapid loss of 5mC in paternal DNA, is likely to be linked to DNA repair mechanisms.  相似文献   

13.
DNA interstrand crosslinks (ICLs) are highly toxic lesions that covalently link both strands of DNA and distort the DNA helix. Crosslinking agents have been shown to stall DNA replication and failure to repair ICL lesions before encountered by replication forks may induce severe DNA damage. Most knowledge of the ICL repair process has been revealed from studies in bacteria and cell extracts. However, for mammalian cells the process of ICL repair is still unclear and conflicting data exist. In this study we have explored the fate of psoralen-induced ICLs during replication, by employing intact mammalian cells and novel techniques. By comparative studies distinguishing between effects by monoadducts versus ICLs, we have been able to link the block of replication to the ICLs induction. We found that the replication fork was equally blocked by ICLs in wild-type cells as in cells deficient in ERCC1/XPF and XRCC3. The formation of ICL induced double strand breaks (DSBs), detected by formation of 53PB1 foci, was equally induced in the three cell lines suggesting that these proteins are involved at a later step of the repair process. Furthermore, we found that forks blocked by ICLs were neither bypassed, restarted nor restored for several hours. We propose that this process is different from that taking place following monoadduct induction by UV-light treatment where replication bypass is taking place as an early step. Altogether our findings suggest that restoration of an ICL blocked replication fork, likely initiated by a DSB occurs relatively rapidly at a stalled fork, is followed by restoration, which seems to be a rather slow process in intact mammalian cells.  相似文献   

14.
We have previously shown that human cancer cells deficient in DNA mismatch repair (MMR) are resistant to the chemotherapeutic methylating agent temozolomide (TMZ) and can be sensitized by the base excision repair (BER) blocking agent methoxyamine (MX) [21]. To further characterize BER-mediated repair responses to methylating agent-induced DNA damage, we have now evaluated the effect of MX on TMZ-induced DNA single strand breaks (SSB) by alkaline elution and DNA double strand breaks (DSB) by pulsed field gel electrophoresis in SW480 (O6-alkylguanine-DNA-alkyltransferase [AGT]+, MMR wild type) and HCT116 (AGT+, MMR deficient) colon cancer cells. SSB were evident in both cell lines after a 2-h exposure to equitoxic doses of temozolomide. MX significantly increased the number of TMZ-induced DNA-SSB in both cell lines. In contrast to SSB, TMZ-induced DNA-DSB were dependent on MMR status and were time-dependent. Levels of 50 kb double stranded DNA fragments in MMR proficient cells were increased after TMZ alone or in combination with O6-benzylguanine or MX, whereas, in MMR deficient HCT116 cells, only TMZ plus MX produced significant levels of DNA-DSB. Levels of AP endonuclease, XRCC1 and polymerase beta were present in both cell lines and were not significantly altered after MX and TMZ. However, cleavage of a 30-mer double strand substrate by SW480 and HCT116 crude cell extracts was inhibited by MX plus TMZ. Thus, MX potentiation of TMZ cytotoxicity may be explained by the persistence of apurinic/apyrimidinic (AP) sites not further processed due to the presence of MX. Furthermore, in MMR-deficient, TMZ-resistant HCT116 colon cancer cells, MX potentiates TMZ cytotoxicity through formation of large DS-DNA fragmentation and subsequent apoptotic signalling.  相似文献   

15.
In a previous study, we identified the novel protein PprA that plays a critical role in the radiation resistance of Deinococcus radiodurans. In this study, we focussed on the ability of PprA protein to recognize and bind to double-stranded DNA carrying strand breaks, and attempted to visualize radiation-induced DNA strand breaks in mammalian cultured cells by employing PprA protein using an immunofluorescence technique. Increased PprA protein binding to CHO-K1 nuclei immediately following irradiation suggests the protein is binding to DNA strand breaks. By altering the cell permeabilization conditions, PprA protein binding to CHO-K1 mitochondria, which is probably resulted from DNA strand break immediately following irradiation, was also detected. The method developed and detailed in this study will be useful in evaluating DNA damage responses in cultured cells, and could also be applicable to genotoxic tests in the environmental and pharmaceutical fields.  相似文献   

16.
DNA single strand breaks (ssb) have been induced in FLC/C cells in culture. They have been visualized in the electron microscope after decoration with biotin-avidin-ferritin complexes and spreading as monomolecular mixed films. This allowed one to determine the average number of decorated ssbs per unit of DNA length applying straight-forward and simple evaluation methods. This method has been used to investigate the DNA alterations by benzo[a]pyrene (B[a]P) on FLC/C culture cells. Thus a B[a]P-DNA damage curve can be constructed as a regression with a correlation coefficient of r = 0.97, while its isomer benzo[e]pyrene (B[e]P) known to have only low mutagenicity under the same experimental conditions is virtually without effect. The method has further informational potential regarding damage distribution and repair of DNA.  相似文献   

17.
18.
Chromosomal aberrations induced by double strand DNA breaks   总被引:4,自引:0,他引:4  
Varga T  Aplan PD 《DNA Repair》2005,4(9):1038-1046
It has been suggested that introduction of double strand DNA breaks (DSBs) into mammalian chromosomes can lead to gross chromosomal rearrangements through improper DNA repair. To study this phenomenon, we employed a model system in which a double strand DNA break can be produced in human cells in vivo at a predetermined location. The ensuing chromosomal changes flanking the breakage site can then be cloned and characterized. In this system, the recognition site for the I-SceI endonuclease, whose 18 bp recognition sequence is not normally found in the human genome, is placed between a strong constitutive promoter and the Herpes simplex virus thymidine kinase (HSV-tk) gene, which serves as a negative selectable marker. We found that the most common mutation following aberrant DSB repair was an interstitial deletion; these deletions typically showed features of non-homologous end joining (NHEJ), such as microhomologies and insertions of direct or inverted repeat sequences. We also detected more complex rearrangements, including large insertions from adjacent or distant genomic regions. The insertion events that involved distant genomic regions typically represented transcribed sequences, and included both L1 LINE elements and sequences known to be involved in genomic rearrangements. This type of aberrant repair could potentially lead to gene inactivation via deletion of coding or regulatory sequences, or production of oncogenic fusion genes via insertion of coding sequences.  相似文献   

19.
Increased lymphocyte DNA strand breaks in rubber workers   总被引:10,自引:0,他引:10  
Zhu CQ  Lam TH  Jiang CQ  Wei BX  Xu QR  Chen YH 《Mutation research》2000,470(2):201-209
OBJECTIVE: To study the effect of occupational exposure to rubber processing, smoking, and alcohol drinking on lymphocyte DNA damage. SUBJECTS AND METHODS: Of 371 employees (197 men and 174 women) from a rubber factory in Guangzhou, 281 were rubber processing workers from five production sections and 90 were managerial workers. Information on occupational exposure, smoking, and drinking was collected by interviews. Blood samples were taken in the morning by venipuncture. DNA damages were measured by the Comet assay. Possible DNA-protein crosslinks were broken down by proteinase K. Tail moment, measured by Komet 4.0 image analysis software, was the measure of DNA damage. RESULTS: The rubber processing workers had larger tail moment than the managerial workers (Geometric mean, 95%CI) [1. 77microm (1.64-1.90) versus 1.52microm (1.36-1.71), P=0.04]. Both smoking [1.93microm (1.74-2.13) versus 1.59microm (1.47-1.71), P=0. 003] and alcohol drinking [2.21microm (1.87-2.62) versus 1.63microm (1.53-1.74), P<0.001] increased tail moment. Tail moment differed significantly among job categories (F=3.21, P=0.008), the largest was observed in mixers. In the non-smoking and non-drinking workers, rubber processing workers had larger tail moment than managerial workers after adjusting for age (P=0.033). General linear model analysis showed that after adjusting for each other, occupational exposure (P=0.027), smoking (P=0.012), and alcohol drinking (P=0. 013) was associated with larger tail moment, whereas age and gender had no effect. CONCLUSIONS: Occupational exposure to rubber processing, smoking, and alcohol drinking can cause DNA damage.  相似文献   

20.
Objective: To study the effect of occupational exposure to rubber processing, smoking, and alcohol drinking on lymphocyte DNA damage. Subjects and Methods: Of 371 employees (197 men and 174 women) from a rubber factory in Guangzhou, 281 were rubber processing workers from five production sections and 90 were managerial workers. Information on occupational exposure, smoking, and drinking was collected by interviews. Blood samples were taken in the morning by venipuncture. DNA damages were measured by the Comet assay. Possible DNA-protein crosslinks were broken down by proteinase K. Tail moment, measured by Komet 4.0 image analysis software, was the measure of DNA damage. Results: The rubber processing workers had larger tail moment than the managerial workers (Geometric mean, 95%CI) [1.77 μm (1.64–1.90) versus 1.52 μm (1.36–1.71), P=0.04]. Both smoking [1.93 μm (1.74–2.13) versus 1.59 μm (1.47–1.71), P=0.003] and alcohol drinking [2.21 μm (1.87–2.62) versus 1.63 μm (1.53–1.74), P<0.001] increased tail moment. Tail moment differed significantly among job categories (F=3.21, P=0.008), the largest was observed in mixers. In the non-smoking and non-drinking workers, rubber processing workers had larger tail moment than managerial workers after adjusting for age (P=0.033). General linear model analysis showed that after adjusting for each other, occupational exposure (P=0.027), smoking (P=0.012), and alcohol drinking (P=0.013) was associated with larger tail moment, whereas age and gender had no effect. Conclusions: Occupational exposure to rubber processing, smoking, and alcohol drinking can cause DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号