首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
PELP1 (proline-rich, glutamic acid-rich, and leucine-rich protein-1) is a potential proto-oncogene that functions as a coregulator of estrogen receptor (ER), and its expression is deregulated during breast cancer progression. Emerging evidence suggests growth factor signaling crosstalk with ER as one possible mechanism by which breast tumors acquire resistance to therapy. In this study, we examined mechanisms by which growth factors modulate PELP1 functions, leading to activation of ER. Using in vivo labeling assays, we have found that growth factors promote phosphorylation of PELP1. Utilizing a panel of substrate-specific phosphorylated antibodies, we discovered that growth factor stimulation promotes phosphorylation of PELP1 that is recognized by a protein kinase A (PKA) substrate-specific antibody. Accordingly, growth factor-mediated PELP1 phosphorylation was effectively blocked by PKA-specific inhibitor H89. Utilizing purified PKA enzyme and in vitro kinase assays, we obtained evidence of direct PELP1 phosphorylation by PKA. Using deletion and mutational analysis, we identified PELP1 domains that are phosphorylated by PKA. Interestingly, site-directed mutagenesis of the putative PKA site in PELP1 compromised growth factor-induced activation and subnuclear localization of PELP1 and also affected PELP1-mediated transactivation function. Utilizing MCF-7 cells expressing a PELP1 mutant that cannot be phosphorylated by PKA, we provide mechanistic insights by which growth factor signaling regulates ER transactivation in a PELP1-dependent manner. Collectively, these findings suggest that growth factor signals promote phosphorylation of ER coactivator PELP1 via PKA pathway, and such modification may have functional implications in breast tumors with deregulated growth factor signaling.  相似文献   

3.
Estradiol (E2), estrogen receptor (ER), ER-coregulators have been implicated in the development and progression of breast cancer. In situ E2 synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms, especially in post-menopausal women. Several recent studies demonstrated activity of aromatase P450 (Cyp19), a key enzyme that plays critical role in E2 synthesis in breast tumors. The mechanism by which tumors enhance aromatase expression is not completely understood. Recent studies from our laboratory suggested that PELP1 (Proline, Glutamic acid, Leucine rich Protein 1), a novel ER-coregulator, functions as a potential proto-oncogene and promotes tumor growth in nude mice models without exogenous E2 supplementation. In this study, we found that PELP1 deregulation contributes to increased expression of aromatase, local E2 synthesis and PELP1 cooperates with growth factor signaling components in the activation of aromatase. PELP1 deregulation uniquely up-regulated aromatase expression via activation of aromatase promoter I.3/II. Analysis of PELP1 driven mammary tumors in xenograft as well as in transgenic mouse models revealed increased aromatase expression. PELP1-mediated induction of aromatase requires functional Src and PI3K pathways. Chromatin immuno precipitation (ChIP) assays revealed that PELP1 is recruited to the Aro 1.3/II aromatase promoter. HER2 signaling enhances PELP1 recruitment to the aromatase promoter and PELP1 plays a critical role in HER2-mediated induction of aromatase expression. Mechanistic studies revealed that PELP1 interactions with orphan receptor ERRα, and histone demethylases play a role in the activation of aromatase promoter. Accordingly, ChIP analysis showed alterations in histone modifications at the aromatase promoter in the model cells that exhibit local E2 synthesis. Immunohistochemical analysis of breast tumor progression tissue arrays suggested that deregulation of aromatase expression occurs in advanced-stage and node-positive tumors, and that cooverexpression of PELP1 and aromatase occur in a sub set of tumors. Collectively, our results suggest that PELP1 regulation of aromatase represent a novel mechanism for in situ estrogen synthesis leading to tumor proliferation by autocrine loop and open a new avenue for ablating local aromatase activity in breast tumors.  相似文献   

4.
Interleukin-1 alpha (IL-1alpha) regulates a wide range of important cellular processes. In this study for the first time, we report the cloning, expression, biophysical, and biological characterization of the human interleukin-1alpha. Human IL-1alpha has been expressed in Escherichia coli in high yields ( approximately 4mg per liter of the bacterial culture). The protein was purified to homogeneity ( approximately 98% purity) using affinity chromatography and size exclusion chromatography. Results of the steady-state fluorescence and 2D NMR experiments show that the recombinant IL-1alpha is in a folded conformation. Far-UV circular dichroism (CD) data suggest that IL-1alpha is an all beta-sheet protein with a beta-barrel architecture. Isothermal titration calorimetry (ITC) experiments show that the recombinant IL-1alpha binds strongly (K(d) approximately 5.6 x 10(-7) M) to S100A13, a calcium binding protein that chaperones the in vivo release of IL-1alpha into the extracellular compartment. Recombinant IL-1alpha was observed to exhibit strong cytostatic effect on human umbilical vascular endothelial cells. The findings of the present study not only pave way for an in-depth structural investigation of the molecular mechanism(s) underlying the non-classical release of IL-1alpha but also provide avenues for the rational design of potent inhibitors against IL-1alpha mediated pathogenesis.  相似文献   

5.
6.
7.
Guo L  Ji C  Gu S  Ying K  Cheng H  Ni X  Liu J  Xie Y  Mao Y 《Journal of genetics》2003,82(1-2):27-32
We isolated a 4301-bp cDNA from a human foetal brain cDNA library by high-throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the putative kinase may interact with PDZ and LIM domain proteins. Therefore the protein and its cDNA were named ’PDLIM1 interacting kinase 1 like’ (PDIK1L; nomenclature approved by the HUGO Gene Nomenclature Committee). Ensembl Genome Browser locatedPDIK1L to human chromosome 1p35.3. It spans about 13.7 kb and consists of four exons and three introns. Multiple-tissue cDNA panel PCR revealed that the gene is expressed widely in human tissues: liver, kidney, pancreas, spleen, thymus and prostate. The protein appears to be localized to the nucleus.  相似文献   

8.
Estrogens are essential for normal reproductive activity in female and male vertebrates. In female reptiles, they are essential for ovarian differentiation during a critical developmental stage. To understand the molecular mechanisms of estrogen action in the Nile crocodile (Crocodylus niloticus), we have isolated cDNA encoding the estrogen receptor alpha (ERalpha) from the ovary. Degenerate PCR primers specific to ER were designed and used to amplify Nile crocodile cDNA from the ovary. The full-length Nile crocodile ERalpha cDNA was obtained using 5' and 3' rapid amplification cDNA ends (RACE). The deduced amino acid sequence of the Nile crocodile ERalpha showed high identity to the American alligator ERalpha (98%), caiman ER (98%), lizard ER (82%) and chicken ERalpha (92%), although phylogenetic analysis suggested profound differences in the rate of sequence evolution for vertebrate ER sequences. Expression of ERalpha was observed in the ovary and testis of juvenile Nile crocodiles. These data provide a novel tool allowing future studies examining the regulation and ontogenic expression of ERalpha in crocodiles and expands our knowledge of estrogen receptor evolution.  相似文献   

9.
Molecular cloning and characterization of rat estrogen receptor cDNA.   总被引:28,自引:4,他引:28       下载免费PDF全文
A cDNA clone of rat uterus estrogen receptor (ER) has been isolated and sequenced. This clone contains a complete open reading frame encoding 600 amino acid residues which is 5 and 11 amino acids larger than the corresponding molecules of human and chicken, respectively. The molecular weight of this protein is calculated to be 67,029. When this clone was ligated to the pSV2 vector and transfected into COS7 cells, a protein was produced that had the same affinity to estrogen as rat uterus ER. This sequence shows 88% homology with human ER; 528 amino acids are identical and 14 amino acids are conservative substitutions. The comparison of rat, human and chicken ER sequences indicate the presence of three highly conserved regions suggesting that these regions play important roles in ER function. The putative DNA-binding domain is completely identical in rat, human and chicken. The C-terminal half region which is thought to be the estrogen binding domain is also highly conserved and is rich in hydrophobic amino acid residues. Southern blot analysis of genomic DNA with ER cDNA as a probe has shown that related sequences are present in the genome.  相似文献   

10.
11.
12.
A novel alpha 1-adrenergic receptor subtype has been cloned from a bovine brain cDNA library. The deduced amino acid sequence is that of a 466-residue polypeptide. The structure is similar to that of the other adrenergic receptors as well as the larger family of G protein-coupled receptors that have a presumed seven-membrane-spanning domain topography. The greatest sequence identity of this receptor protein is with the previously cloned hamster alpha 1B-adrenergic receptor being approximately 72% within the presumed membrane-spanning domains. Localization on different human chromosomes provides evidence that the bovine cDNA is distinct from the hamster alpha 1B-adrenergic receptor. The bovine cDNA clone expressed in COS7 cells revealed 10-fold higher affinity for the alpha 1-adrenergic antagonists WB4101 and phentolamine and the agonist oxymetazoline as compared with the alpha 1B receptor, results similar to pharmacologic binding properties described for the alpha 1A receptor. Despite these similarities in pharmacological profiles, the bovine alpha 1-adrenergic receptor is sensitive to inhibition by the alkylating agent chloroethylclonidine unlike the alpha 1A-adrenergic receptor subtype. In addition, a lack of expression in tissues where the alpha 1A subtype exists suggests that this receptor may actually represent a novel alpha 1-adrenergic receptor subtype not previously appreciated by pharmacological criteria.  相似文献   

13.
We report the isolation of a full-length rat cDNA for a new activin receptor. The deduced amino acid sequence of this receptor shows 67 percent overall identity with that of a previously identified mouse activin receptor. As predicted for the mouse activin receptor, the amino acid sequence of the rat receptor is consistent with a polypeptide containing an extracellular ligand binding domain, a hydrophobic transmembrane domain, and a serine/threonine kinase intracellular domain. In an expression assay, this new receptor was found to bind I125 radiolabeled activin.  相似文献   

14.
15.
Lysophosphatidic acid (LPA), together with sphingosine 1-phosphate, is a bioactive lipid mediator that acts on G-protein-coupled receptors to evoke multiple cellular responses, including Ca(2+) mobilization, modulation of adenylyl cyclase, and mitogen-activated protein (MAP) kinase activation. In this study, we isolated a human cDNA encoding a novel G-protein-coupled receptor, designated EDG7, and characterized it as a cellular receptor for LPA. The amino acid sequence of the EDG7 protein is 53.7 and 48.8% identical to those of the human functional LPA receptors EDG2 and EDG4, respectively, previously identified. LPA (oleoyl) but not other lysophospholipids induced an increase in the [Ca(2+)](i) of EDG7-overexpressing Sf9 cells. Other LPA receptors, EDG4 but not EDG2, transduced the Ca(2+) response by LPA when expressed in Sf9 cells. LPAs with an unsaturated fatty acid but not with a saturated fatty acid induced an increase in the [Ca(2+)](i) of EDG7-expressing Sf9 cells, whereas LPAs with both saturated and unsaturated fatty acids elicited a Ca(2+) response in Sf9 cells expressing EDG4. In EDG7- or EDG4-expressing Sf9 cells, LPA stimulated forskolin-induced increase in intracellular cAMP levels, which was not observed in EDG2-expressing cells. In PC12 cells, EDG4 but not EDG2 or EDG7 mediated the activation of MAP kinase by LPA. Neither the EDG7- nor EDG4-transduced Ca(2+) response or cAMP accumulation was inhibited by pertussis toxin. In conclusion, the present study demonstrates that EDG7, a new member of the EDG family of G-protein-coupled receptors, is a specific LPA receptor that shows distinct properties from known cloned LPA receptors in ligand specificities, Ca(2+) response, modulation of adenylyl cyclase, and MAP kinase activation.  相似文献   

16.
DNA from a rat hippocampus cDNA library and sets of highly degenerate oligonucleotide primers directed toward conserved regions of previously cloned G-protein receptors were used in the polymerase chain reaction to selectively amplify and clone new members of this gene family. A human hippocampus cDNA library was screened with a 610 base pair fragment generated by PCR and a cDNA clone, H318/3, was isolated. The deduced amino acid sequence of this clone encoded a protein of 501 amino acids that showed strong sequence homology to previously cloned G-protein receptors. Nucleotide sequence analysis revealed clone H318/3 was 78% homologous to a rat alpha 1A adrenergic receptor with homology being 95% when comparisons were made in the region that lies between the first to the seventh transmembrane domains. Based on this high degree of sequence homology, we conclude that clone H318/3 represents a cDNA for a human alpha 1A adrenergic receptor.  相似文献   

17.
Reversible phosphorylation is recognized to be a major mechanism for the control of intracellular events in eukaryotic cells. From a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel dual specificity protein phosphatase, which showed 88% identity with previously reported mouse LMW-DSP3 at the amino acid level. The deduced protein had a single dual-specificity phosphatase catalytic domain, and lacked a cdc25 homology domain. LMW-DSP3 was expressed in the heart, lung, liver, and pancreas, and the expression level in the pancreas was highest. The LMW-DSP3 gene was located in human chromosome 2q32, and consisted of five exons spanning 21kb of human genomic DNA. LMW-DSP3 fused to GST showed phosphatase activity towards p-nitrophenyl phosphate which was optimal at pH 7.0 and 40 degrees C, and the activity was enhanced by Ca(2+) and Mn(2+). The phosphatase activity of LMW-DSP3 was inhibited by orthovanate. LMW-DSP3 showed phosphatase activity toward oligopeptides containing pSer/Thr and pTyr, indicating that LMW-DSP3 is a protein phosphatase with dual substrate specificity.  相似文献   

18.
We have cloned a novel cell-surface protein designated SPAP1a for SH2 domain-containing phosphatase anchor protein 1a. SPAP1a belongs to the group of type I transmembrane proteins. Its extracellular domain contains a single immunoglobulin-like domain, and its intracellular segment has two immunoreceptor tyrosine-based inhibition motifs (ITIMs). We also identified two alternatively spliced products that were named SPAP1b and SPAP1c. SPAP1b contains a short intracellular part without ITIMs, while SPAP1c lacks the transmembrane segment and represents a potential soluble protein. Sequence alignment with the genomic database revealed that the SPAP1 gene contains seven exons and is localized at chromosome 1q21. PCR analyses demonstrated that SPAP1a mRNA is specifically expressed in human hematopoietic tissues including spleen, peripheral blood, and bone marrow, and it may be restricted to expression in B cells. Recombinant SPAP1a is tyrosine phosphorylated in cells upon pervanadate stimulation and tyrosine-phosphorylated SPAP1a recruits the SH2 domain containing phosphatase SHP-1, but not SHP-2. As a specific anchor protein of SHP-1, SPAP1a may have an important role in hematopoietic cell signaling.  相似文献   

19.
A new histamine receptor, HH4R, was cloned from human leukocyte cDNA. The deduced amino acid sequence showed about 40% identity to that of the human histamine H3 receptor, HH3R. HH4R-expressing cells responded to histamine, inhibiting forskolin-induced cAMP accumulation. An H3 agonist, N-alpha-methylhistamine (NAMHA), bound specifically to HH4R, while another H3 agonist, R(-)-alpha-methylhistamine (RAMHA), and the H3 antagonist, thioperamide, competed with this binding. RAMHA, NAMHA, and imetit inhibited forskolin-induced cAMP accumulation in HH4R-expressing cells. However, the binding affinities and agonistic activities of H3 agonists to HH4R were weaker than those to HH3R. Low expression of HH4R was detected in a wide variety of peripheral tissues by RT-PCR; however, in contrast with HH3R, expression was not detected in the brain. These observations indicate that the clone is a distinct histamine receptor from HH3R, and thus is named HH4R.  相似文献   

20.
We have cloned a human counterpart to a guinea pig STE20-like kinase cDNA, designated human SLK (hSLK), from a human lung carcinomatous cell line A549 cDNA library. hSLK cDNA encodes a novel 1204 amino acid serine/threonine kinase for which the kinase domain located at the N-terminus shares considerable homology to that of the STE20-like kinase family. The C-terminal domain of hSLK includes both the coiled-coil structure and four Pro/Glu/Ser/Thr-rich (PEST) sequences, but not the GTPase-binding domain (GBD) that is characteristic of the p21-activated kinase (PAK) family, polyproline consensus binding sites, or the Leu-rich domain seen in the group I germinal center kinases (GCKs). Northern blot analysis indicated that hSLK was ubiquitously expressed. hSLK overexpressed in COS-7 cells phosphorylates itself as well as myelin basic protein used as a substrate. On the other hand, hSLK cannot activate any of the three well-characterized mitogen-activated protein kinase MAPK (ERK, JNK/SAPK and p38) pathways. Moreover, hSLK kinase activity is not upregulated by constitutive active forms of GTPases (RasV12, RacV12 and Cdc42V12). These structural and functional properties indicate that hSLK should be considered to be a new member of group II GCKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号