首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental control of zooplankton biomass size structure(53–100, 100–202, 202–500 and >500 µm)was investigated in the three limnetic strata of 25 southernQuébec Shield lakes, Canada. Among-lake differences werethe greatest source of variation of zooplankton biomass, whereasthe strong lake–by–stratum interaction observedindicated that the vertical variations of zooplankton biomassand its size fractions were not constant from lake to lake.The analysis of spatial and local factors based on thermal stratais consistent with conceptual models of predation and nutrientcontrol on the biomass and size structure of the zooplankton.Productivity of the aquatic systems, which was driven by lakedepth, flushing rate and total phosphorus concentration, wasthe primary factor influencing total zooplankton biomass andsize structure at among-lake scale in epilimnetic waters. Theeffects of the planktivorous fish on the large zooplankton biomass(>500 µm) was more clearly perceived when the effectof lake depth was removed by partial redundancy analysis. Thisstudy showed that although bottom-up and top-down forces arecomplementary in structuring of zooplankton communities, theycan also act differently on the community attributes (e.g. biomassand size structure). Among-lake zooplankton biomass is predictablefrom lake trophy, but the size structure and vertical distributionof zooplankton communities appear to be controlled by lake stratificationand by inference to interactions with size selective predationby fish. In metalimnetic waters, the 53–100 and 100–202µm zooplankton biomass fractions were primarily dependenton abiotic factors, while the 202–500 and >500 µmfractions were related to planktivory and picophytoplanktonconcentrations. The well-oxygenated and cold hypolimnetic watersof some lakes offered a refuge from surface turbulence and planktivoryto large zooplankton size fractions (202–500 and >500µm).  相似文献   

2.
3.
Body size and mass flow in freshwater plankton: models and tests   总被引:1,自引:0,他引:1  
Observations of radiotracer (32P) flow in size-fractionatedlake plankton were compared with the predictions of size-dependentmodels of material flow. The models assume that the metabolicactivity and turnover of the size fractions can be describedas power functions of size (Y=aMb) One model, called size-structured,is an application of the Platt and Denman formalism: it assumesthat materials are incorporated preferentially by the smallestorganisms and flow continuously toward the larger organisms.In this model, the trophodynamic flow from a size fraction isconstrained to the next larger fraction. The tracer data indicatedthat metabolic activity could indeed be described as a continuousfunction of size, at least within the microplankton (< 75µm), but it did not support the hypothesis of a size-hierarchicaltrophodynamic flow. Another model limited the size range ofpredators to the larger (> 10 µm), size fractions whilerelaxing the size dependence constraint on the trophodynamicflow. This ‘unstructured’ model agreed better withthe 32P dynamics and generated estimates of seston P uptakeand of the rates of biomass turnover that compared favorablywith published estimates for oligotrophic lakes. Some problemswith the fit to the data remain but might be dealt with by distinguishinga priori among functional types of planktonic organisms throughfluorescence (flow cytometry) or metabolic properties (inhibitors).  相似文献   

4.
Seasonal changes in the biochemistry of lake seston   总被引:3,自引:0,他引:3  
1. The quantity of seston was measured and the elemental carbon, nitrogen and phosphorus (C, N, P) and biochemical composition (carbohydrate, protein, lipid) of the < 53 μm size fraction in three temperate lakes during one year was analysed. The lakes differed in nutrient concentration and were characterized as oligotrophic, mesotrophic and eutrophic. Linear regression analyses defined associations between seston composition and either lake trophic status, depth or season. 2. The concentration of particulate organic seston was greatest during spring and autumn and lowest during the clear water period in early summer. Seasonal patterns in seston elemental and biochemical percentage composition (quality) were observed to be independent of differences in seston quantity. 3. Concentrations of seston C, N and P were high in most cases in the spring and autumn and low in summer. Concentrations of P were particularly high during late summer and early autumn in the metalimnion, perhaps because of recovery of P from anaerobic sediments and hypolimnetic waters. Because seston C and N did not increase as markedly as P, C : P and N : P ratios both declined in the autumn. Primary production was thought to be co-limited by N and P in all three of these lakes; however, the data suggested that N might be more important as a major limiting nutrient in the eutrophic lake as the metalimnion increased in depth in late summer and autumn. 4. Concentrations of protein, carbohydrate, polar lipid and triglyceride generally increased with lake type as expected (greatest in the eutrophic lake), but showed no relationship with water depth. As the year progressed, no significant changes were measured in protein and carbohydrate concentrations; however, the concentration of polar lipid decreased and triglyceride increased significantly with time of year. 5. The biochemical composition of seston varied during the year and among lakes; for example, in Lake Waynewood the proportion of protein composing the seston (percentage protein by weight) varied from < 10% to > 40%. No statistically significant patterns in the percentage protein or carbohydrate were found. However, the proportion of seston comprised of triglyceride decreased with lake type and increased during the year; whereas the proportion of seston as polar lipid increased with lake type and decreased during the year. Triglyceride comprised most of the lipid. Both protein : lipid and protein : carbohydrate ratios tended to be greatest in summer and lowest in the spring and autumn. 6. Relationships between samples and biochemical composition analysed by Canonical Correspondence Analysis (Canoco) indicated similar patterns in seasonal changes in seston biochemistry for the three lakes, with samples separated primarily by vectors for lake type (oligotrophic to eutrophic) and the percentage polar lipid (proportion of total lipid) and secondarily by vectors for date and water depth (epilimnion or metalimnion). 7. These seasonal biochemical changes in the seston food base were compared with biochemical changes known to occur in algae grown under N-or P-limited conditions in the laboratory, and the resultant quality of this algal food for suspension-feeding consumers (zooplankton). It was concluded that zooplankton were likely to be physiologically challenged by these distinct seasonal shifts in the quality of lake seston.  相似文献   

5.
Lakes were surveyed to assess the potential patterns of latitudinalvariation in carbon:nitrogen:phosphorus (C:N:P) stoichiometryof lower food web components. Thirty-four lakes were surveyedat an arctic latitude (68°38'N, 149°38'W) and 10 lakesat a temperate latitude (46°13'N, 89°32'W) during 1997.The temperate data set was augmented with earlier survey resultsemploying similar methods. It was hypothesized that differencesin environmental variables across latitude would cause differencesin community C:N:P ratios, leading to differences in trophicinteractions. Physical measurements (light, temperature), sestonand zooplankton were collected from each lake. Seston and zooplanktonwere analyzed for C, N and P content, and zooplankton were countedand measured for biomass estimates. The degree of trophic interactionbetween seston and zooplankton was assessed by (i) measuringelemental imbalances between seston and zooplankton and (ii)calculating the potential recycling ratio by the zooplanktoncommunity available for seston. Seston C:nutrient, but not N:P,ratios were higher in temperate than arctic lakes. Conversely,arctic zooplankton had higher C:nutrient, but not N:P, ratiosthan zooplankton in temperate lakes. Elemental imbalances weregreater in temperate than in arctic lakes, but N:P stoichiometryof potential zooplankton recycling was nearly identical betweenthe two latitudes. Zooplankton community C:N:P ratios were notrelated to either latitude or seston C:N:P. In accordance withstoichiometric theory, relative abundances of calanoid copepodswere positively correlated with seston C:N in temperate lakes.Additionally, relative abundances of Daphnia were negativelycorrelated with seston C:N ratios in temperate and arctic lakes,and positively correlated with N:P ratios in the arctic. Ingeneral, these results suggest that seston and zooplankton communitystoichiometry differ across latitude, and these differenceshave the potential to affect trophic interactions.  相似文献   

6.
The zooplankton community structure of 22 lakes with varyingacidity and fish biomass, located southwest of the mining andsmelting region of Rouyn/Noranda, Quebec, was examined in July1987. Lakes with dominant piscivorous fish communities couldbe discriminated from non-piscivorous communities using solelypH and Chaoborus abundance, demonstrating that modificationsin the zooplankton community occurred concurrently with changesin the fUh communities. Strong discontinuities in zooplanktonspecies distributions were discerned in lakes with pH values<5.3; abundance ranges for several species could be semi-quantitativelyrelated to lake morpho-metry or chemistry. Small shallow kettlelakes with elevated heat budgets had high biomasses of smallherbivorous organisms. The presence of >5 mg m–3 ofadvanced Chaoborus instars (III and IV) was associated withreduced microcrustacean biomass in many lakes, particularlythose with low fish biomass. There was little evidence for size-selectivepredation by fish in these oligotrophic lakes. Fish biomass/effortcould be semi-quantitatively related to the biomass of Leptodorakindtii and the ratio of adult Diaptomus nunutus to copepoditestage IV.  相似文献   

7.
Gulati  R. D. 《Hydrobiologia》1990,(1):99-118
Structure and grazing activities of crustacean zooplankton were compared in five lakes undergoing manipulation with several unmanipulated eutrophic (shallow) and mesotrophic (deep) lakes in The Netherlands. The biomanipulated lakes had lesser number of species and their abundance, both of rotifers and crustaceans, and had much larger mean animal size (3–11 μg C ind.−1) than in the unmanipulated eutrophic lakes (0.65 μG C ind.−1). WhereasD. hyalina (=D. galeata) andD. cucullata generally co-occurred in the unmanipulated lakes, in the manipulated lakes bothD. hyalina and other large-bodied daphnids,D. magna,D. pulex (=D. pulicaria), were the important grazers. In the biomanipulated lakes an increase in the individual crustacean size and of zooplankton mass were reflected in a decrease in seston concentration, higher Secchi-disc depth and a marked decrease in the share in phytoplankton biovolume of cyanobacteria. Biomass relationship between seston (150 μm) and zooplankton indicated a Monod type relationship, with an initial part of the curve in which the zooplankton responds linearly to the seston increase up to aboutca. 2 mg C l−1, followed by a saturation of zooplankton mass (0.39 mg C l−1) at 3–4 mg C l−1 seston, and an inhibitory effect on zooplankton mass at seston levels>4 mg C l−1. This latter is related to predominance in the seston of cyanobacteria. In the biomanipulated lakes, the zooplankton grazing rates often exceeded 100% d−1, during the spring, and food levels generally dropped to <0.5 mg C l−1. The computed specific clearance rate (SCR) of zooplankton of 1.9 l mg−1 Zoop C is well within the range of SCR values (1.7–2.2 l mg−1 Zoop C) from deep and mesotrophic waters, but about an order of magnitude higher than in the eutrophic lakes, with the food levels 10-fold higher. For 25% d−1 clearance of lake seston between 35 and 60 ind. l−1 are needed in the biomanipulated lakes against 1200–1300 ind. l−1 in eutrophic lakes. Similarly, about 10 to 15 times more crustacean grazers are required to eliminate the daily primary production in the eutrophic lakes than in the biomanipulated lakes. These numbers are inversely related to the differences in animal size. The corresponding biomass values of zooplankton needed to clear the daily primary production in the eutrophic waters were 0.1–0.2 mg C l−1 in the biomanipulated lakes, but about 0.45 mg C l−1 in the unmanipulated eutrophic waters. Only if the water was kept persistently clear by zooplankton was there a balanced seston budget between the inputvia primary production and elimination by zooplankton. Mostly, however, the input exceeded the assimilatory removal by zooplankton, such that the estimated seston loss could be attributed to sedimentation and mineralization.  相似文献   

8.
We exposed natural zooplankton communities to in situ levelsof sunlight for 3 days at different depths in two north temperatelakes: one oligotrophic and one eutrophic. Natural fluxes ofUV-B radiation (280–320 nm) were manipulated with cutofffilters (Mylar®). There was substantial mortality in someof the zooplankton exposed to UV-B in the oligotrophic lake,but not in the eutrophic lake. Reproduction of Diaptomus wassuppressed by UV-B down to 6 m in the oligotrophic lake. Thesedata suggest that natural levels of UV-B radiation in the oligotrophiclake may prevent some species of zooplankton from continuouslyexploiting the warm surface waters during summer stratification.In the more eutrophic lake, UV-B is a less important constraintin the vertical distribution of zooplankton. These differencesin the responses of zooplankton to natural UV-B radiation inlakes may alter their ecological interactions with food resources,predators and other environmental variables in the water column. 1Present address: Universidad Nacional del Comahue, Centro RegionalUniversitario Bariloche, CC 1336, (8400) Bariloche, Argentina 2Present address: National Academy of Engineering, 2101 ConstitutionAvenue, NW, Washington, DC 20418, USA  相似文献   

9.
To gain better insight into the importance of predator and resourcecontrol in New Zealand lakes we surveyed the late summer trophicstructure of 25 shallow South Island lakes with contrastingnutrient levels (6–603 µg TP l–1) and fishdensities. Total catch of fish per net (CPUE) in multi-meshgillnets placed in the open water and the littoral zones waspositively related with the nutrient level. Trout CPUE was negativelycorrelated with total phosphorus (TP) and total nitrogen (TN).Zooplankton seemed largely influenced by fish, as high fishCPUE coincided with low zooplankton and Daphnia biomass, lowaverage weight of cladocerans, low contribution of Daphnia tototal cladoceran biomass, low ratio of calanoids to total copepodbiomass and low ratio of zooplankton biomass to phytoplanktonbiomass. However, chlorophyll a was only slightly negativelyrelated to Daphnia biomass and not to zooplankton biomass ina multiple regression that included TN and TP. Ciliate abundancewas positively related to chlorophyll a and negatively to Daphniabiomass, but not to total zooplankton biomass, while no relationshipswere found between heterotrophic nanoflagellates and zooplankton.The relationships between fish abundance and nutrients and fishabundance and zooplankton:phytoplankton ratio and between chlorophylla and TP largely followed the pattern obtained for 42 northtemperate Danish lakes. We conclude that fish, including trout,have a major effect on the zooplankton community structure andbiomass in the pelagial of the shallow oligotrophic to slightlyeutrophic New Zealand lakes, but that the cascading effectson phytoplankton and protist are apparently modest.  相似文献   

10.
Seasonal dynamics in elemental composition [carbon (C), nitrogenand phosphorus (P)] of seston and zooplankton were studied overseveral years in three hypereutrophic Dutch lakes with persistentdominance and high biomass of cyanobacteria. In all three lakes,there was a strong pattern with decreased P-content and increasedC:P ratio in seston (<150 µm) coinciding with the increasein water temperature. The seston C:P ratios (at:at) were morethan doubled with the rising temperature, i.e. from 200 (at:at)in winter to 500 in summer. Sestonic C:P ratios increased overthe growing season, suggesting that seasonal dynamics amongautotrophs with high P-uptake in winter and support of subsequentphytoplankton growth by consumption of internal cellular P (P-quota)was the main cause of low sestonic P contents in late summer.This could, however, occur in concert with a physiologicallydriven decrease in cell-specific P at higher temperatures insummer. In contrast, the annual variation of C:P ratios of thezooplankton fraction was only 10% of that of seston. The variationsof C:P ratios of the zooplankton were, nevertheless, stronglycorrelated with those of seston. For most of the summer, sestonC:P ratios were far above the threshold ratio for P-limitationin Daphnia and other P-demanding species. This will pose furtherconstraints on growth performance of Daphnia in these lakes,thus adding to the fish predation pressure and the poor foodquality of cyanobacteria per se. The low grazing pressure causesa high biomass of low-quality autotrophs, promoting a stablestate with low trophic transfer efficiency.  相似文献   

11.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

12.
Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, driven by agricultural eutrophication (in eutrophic Lake Köyliöjärvi) or global warming (in mesotrophic Lake Pyhäjärvi), influence the biomass and structure of phytoplankton, zooplankton, and fish communities. In terms of the nutritional value of food web components, we evaluated changes in the ω‐3 and ω‐6 polyunsaturated fatty acids (PUFA) of phytoplankton and consumers at different trophic levels. Meanwhile, the lakes did not differ in their biomasses of phytoplankton, zooplankton, and fish communities, lake trophic status greatly influenced the community structures. The eutrophic lake, with agricultural eutrophication, had cyanobacteria bloom throughout the summer months whereas cyanobacteria were abundant only occasionally in the mesotrophic lake, mainly in early summer. Phytoplankton community differences at genus level resulted in higher arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content of seston in the mesotrophic than in the eutrophic lake. This was also reflected in the EPA and DHA content of herbivorous zooplankton (Daphnia and Bosmina) despite more efficient trophic retention of these biomolecules in a eutrophic lake than in the mesotrophic lake zooplankton. Planktivorous juvenile fish (perch and roach) in a eutrophic lake overcame the lower availability of DHA in their prey by more efficient trophic retention and biosynthesis from the precursors. However, the most efficient trophic retention of DHA was found with benthivorous perch which prey contained only a low amount of DHA. Long‐term cyanobacterial blooming decreased the nutritional quality of piscivorous perch; however, the difference was much less than previously anticipated. Our result shows that long‐term cyanobacteria blooming impacts the structure of plankton and fish communities and lowers the nutritional quality of seston and zooplankton, which, however, is mitigated at upper trophic levels.  相似文献   

13.
The plankton of nine Ontario lakes spanning several physiographicregions was sampled every two weeks during the ice-free periodof 1981, and one lake was studied in the three previous years.Phytoplankton, zooplankton, and ciliated protozoa were sampled,counted and sized. The size data were converted to biomass estimatesto yield quantitative comparisons of the relative allocationof biomass among different functional compartments. This isthe first study to look simultaneously and quantitatively atthe total plankton system of lakes (including ciliates, pbytoplanktonand net zooplankton) over a broad physiographic region. Ciliatesconstitute –10% of the non-algal biomass and 5% of thetotal planktonic biomass of these lakes. Ciliate standing cropsamong lakes are significantly corrrelated with total organicand total inorganic carbon concentrations in the water column,while the dynamics of ciliate biomass fluctuations are significantlycorrelated with variations in total phosphorus concentration,in conductivity, in Kjeldahl nitrogen concentration, and ininorganic carbon content. There appears to be a significantdynamical relationship between ciliates as a proportion of thetotal planktonic biomass, exclusive of filamentous and large(>30 µm) spherical algae, and the relative biomassof small algae (2–5 µm) as a fraction of total algalbiomass, again exclusive of filaments and large (>30 µm)algae. The hypothesis is advanced that ciliates primarily functionas bacterial grazers in planktonic ecosystems and that theirprimary competitors in this role are rotifers.  相似文献   

14.
The relative strength of "top-down" versus "bottom-up" control of plankton community structure and biomass in two small oligotrophic lakes (with and without fish), located near the Polar circle (Russia), has been investigated for two years, 1996 and 1997. The comparative analyses of zooplankton biomass and species abundance showed strong negative effect of fish, stickeback (Pungitius pungitius L.), on the zooplankton community species, size structure and biomass of particular prey species but no effect on the biomass of the whole trophic level. An intensive predation in Verkhneye lake has lead to: 1) sixfold decline in biomass of large cladoceran Holopedium gibberum comparing to the lake lacking predator, 2) shift in the size mode in zooplankton community and the replacement of the typical large grazers by small species--Bosmina longirostris and rotifers. Their abundance and biomass even increased, demonstrating the stimulating effect of fish on the "inefficient" and unprofitable prey organisms. The analysis of contributions of different factors into the cladoceran's birth rate changes was applied to demonstrate the relative impact of predators and resources on zooplankton abundance. An occasional introduction of the stickleback to Vodoprovodnoye lake (the reference lake in 1996) in summer 1997 lead to drastic canges in this ecosystem: devastating decrease of zooplankton biomass and complete elimination of five previously dominant grazer species. The abundance of edible phytoplankton was slightly higher in the lake with fish in 1996 and considerably higher in the lake where fish has appeared in 1997 showing the prevailing "top-down" control of phytoplankton in oligotrophic ecosystem. The reasons of trophic cascade appearance in oligotrophic lakes are also discussed.  相似文献   

15.
The number, size (mm3 pellet –1) and total volume of fecalpellets produced (mm3 h–1) by Boeckella titicacae increasedwith concentration of Chlorella and natural seston in threedifferent lakewaters from Bahia de Puno and Lago Grande of LakeTiticaca and nearby Laguna Arapa. The three lakewaters differedin the size and number of fecal pellets produced at seston concentrations>0.5 mg dry wt l–1. However, the total volume of fecalpellets egested varied little. Large-sized food (>10 µg)resulted in larger pellets but smaller total fecal production.Food concentration had parallel effects on the production offeces and on feeding rates. Both fecal production and feedingincreased linearly with food concentration with saturation between5 and 7.5 x 105 Chlorella ml–1 (3.7–5.6 mg dry wtl–1). Varied responses in fecal production when fed differentsize fractions of lake seston suggest Boeckella has a complexand flexible feeding behavior. Feeding preferences of B.titicacaeand B.occidentalis (Ivlev index) for two seston size fractionsare generally reflected by fecal production.  相似文献   

16.
1. Growth and reproduction of Daphnia fed lake seston were measured in two categories of meso‐ to eutrophic lakes differing with respect to terrestrial organic matter influence (humic and clear water lakes). The content of highly unsaturated fatty acids (HUFA), P and N, as well as the taxonomical composition of seston were analysed. 2. Seston HUFA and C : P ratios were similar between lake categories, whereas C : N ratios were lower in the clear water lakes in both spring and summer. Despite the similarity in HUFA and P content of seston, Daphnia growth rate, clutch size and the proportion of gravid females were, respectively, about 1.5, 3 and 6 times higher in the clear water lakes. 3. Differences in growth and reproduction were related to a combination of higher N content and good fatty acid quality of the seston in the clear water lakes. Relatively high biomass of edible algae, such as Rhodomonas sp. and Cryptomonas sp., in the clear water lakes, and differences in water pH likely contributed to the observed differences in Daphnia growth and reproduction between lake categories. Additionally, it is possible that Daphnia was energy limited in the humic lakes despite high particulate organic carbon (POC) concentrations, as the contribution of non‐algal and detrital C to the POC pool was high. 4. Our results suggest that dietary HUFA content has the potential to improve herbivore growth and reproduction if N and P are not limiting. N merits more attention in studies of zooplankton nutrition.  相似文献   

17.
Phytoplankton structure in different lake types in central Finland   总被引:2,自引:0,他引:2  
Pertti Eloranta 《Ecography》1986,9(3):214-224
Phyloplankton structure and its relation to physical and chemical properties of the water was studied in 58 central Finnish lakes. The biomass ranged from 0.2 to 14.2 g m−3 and the number of taxa per sample ranged from 33 to 152. The lakes were grouped into 5 types according to their trophic state: eutrophic, dyseutrophic, mesotrophic, oligotrophic, and acid oligotrophic lakes. The average biomass in eutrophic lakes was 5.57 g m−3, in dyseutrophic 3.54 g m−3, 1.23 g m−3 in mesotrophic, 0.52 g m−3 in oligotrophic and 0.39 g −3 in acid oligotrophic lakes. The average number of taxa per sample in the corresponding lake types were 109. 1, 79.3, 97.9, 90.9 and 43.8, respectively. The phytoplankton communities in eutrophic lakes were characterized by blue-green algae (21.2% of total biomass) and green algae (18.7% of total biomass). In dyseutrophic lakes the proportion of green algae was much smaller (7.2% of total biomass) than in eutrophic lakes, whereas the proportion of diatoms and cryptophytes was higher (28.2 and 20.4% of total biomass, respectively). Chrysophytes dominated in the oligotrophic and mesotrophic lakes (27.3–39.9% of total biomass). The contribution of dinoflagellates to the total biomass was highest in the most oligotrophic acidified lakes and in those lakes the relative proportions of blue-green and green algae were much higher than in the typical oligotrophic lakes. The lakes were also grouped into 8 community types according to the dominating algal group. Cyanophyceae- and Chlorophyceae-types characterized the eutrophic lakes, whereas Chrysophyceae-Dinopheceae-type was typical for most oligotrophic lakes. The other 5 types occurred in mesotrophic and oligotrophic lakes but the physical and chemical properties of these lakes did not differ much.  相似文献   

18.
Parke A. Rublee 《Hydrobiologia》1992,240(1-3):133-141
Microplankton community structures and abundance was assessed in lakes at the Toolik Lake LTER site in northern Alaska during the summers of 1989 and 1990. The microplankton community included oligotrich ciliates, but rotifers and zooplankton nauplii comprised greater than 90% of total estimated heterotrophic microplankton biomass. Dominant rotifer taxa included Keratella cochlearis, Kellicottia longispina, Polyarthra vulgaris, Conochilus unicornis and a Synchaeta sp. Microplankton biomass was lowest in highly oligotrophic Toolik Lake (< 5 μgCl−1 at the surface) and highest (up to 55 μCl−1) in the most eutrophic lakes, experimentally fertilized lakes, and fertilized limnocorrals, consistent with bottom-up regulation of microplankton abundance.  相似文献   

19.
Lake trophic state and the limnological effects of omnivorous fish   总被引:3,自引:2,他引:1  
Ecologists have hypothesized that planktivorous fish have greater effects on the plankton and water quality of oligotrophic lakes than eutrophic lakes. We tested this hypothesis in a tank-mesocosm experiment of factorial design in which five biomass levels of filter-feeding omnivorous gizzard shad (Dorosoma cepedianum) were cross-classified with two levels of lake trophic state achieved by filling tank-mesocosms with water and plankton transported by truck from two lakes with different trophic states. The presence of gizzard shad significantly increased total phosphorus, primary productivity, chlorophyll, and particulate phosphorus (PP) 2–20 and 20–200 μm and significantly decreased Secchi depth, cladocerans, copepods and PP > 200 μm. The effects of gizzard shad on chlorophyll, Secchi depth, cladocerans, copepods and PP 2–20 and > 200 μm were dependent on lake trophic state and most intense in the eutrophic lake system. This experiment suggests that filter-feeding omnivorous fish interact synergistically with trophic state so that the limnological effects of omnivorous fish become more intense with increased eutrophication.  相似文献   

20.
Introduction of strictly planktivorous fish to lakes can alter plankton communities via cascading interactions in food webs. Less is known about the large-scale and long-term effects resulting from the introduction of fish with more generalist feeding habits, and the extent to which these effects depend on lake trophic status. Paleolimnological records of three oligotrophic lakes in Maine, USA were used to analyze the response of plankton communities to the introduction of white perch (Morone americana), a fish that often numerically dominates fish assemblages and switches from strict planktivory to a more generalist diet during ontogeny. After white perch introduction, cladoceran ephippia size increased up to 50 %, suggesting that the most important role of this generalist fish, with respect to water quality, is as a piscivorous trophic link. Algal standing crop declined by a quarter to over a half of pre-introduction levels, suggesting that top-down effects of white perch reduced phytoplankton biomass. In comparing these oligotrophic lakes to prior work in a eutrophic system, white perch introduction had similar effects on zooplankton body size; however, cascading effects to phytoplankton were only observed in low productivity lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号