首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Individual growth factors can regulate multiple aspects of behavior within a single cell during differentiation, with each signaling pathway controlled independently and also responsive to other receptors such as cell surface integrins. The mechanisms by which this is achieved remain poorly understood. Here we use myelin-forming oligodendrocytes and their precursors to examine the role of lipid rafts, cholesterol and sphingolipid-rich microdomains of the cell membrane implicated in cell signaling. In these cells, the growth factor PDGF has sequential and independent roles in proliferation and survival. We show that the oligodendrocyte PDGFalpha receptor becomes sequestered in a raft compartment at the developmental stage when PDGF ceases to promote proliferation, but is now required for survival. We also show that laminin-2, which is expressed on axons in the CNS and which provides a target-dependent signal for oligodendrocyte survival by amplification of PDGFalphaR signaling, induces clustering of the laminin binding integrin alpha6beta1 with the PDGFalphaR-containing lipid raft domains. This extracellular matrix-induced colocalization of integrin and growth factor receptor generates a signaling environment within the raft for survival-promoting PI3K/Akt activity. These results demonstrate novel signaling roles for lipid rafts that ensure the separation and amplification of growth factor signaling pathways during development.  相似文献   

2.
The TNFR, TNF-R1, is localized to lipid raft and nonraft regions of the plasma membrane. Ligand binding sets in motion signaling cascades that promote the activation of p42(mapk/erk2) and NF-kappaB. However, the role of receptor localization in the activation of downstream signaling events is poorly understood. In this study, we investigated the dynamics of TNF-R1 localization to lipid rafts and the consequences of raft localization on the activation of p42(mapk/erk2) and NF-kappaB in primary cultures of mouse macrophages. Using sucrose density gradient ultracentrifugation and a sensitive ELISA to detect TNF-R1, we show that TNF-R1 is rapidly and transiently recruited to lipid rafts in response to TNF-alpha. Disruption of lipid rafts by cholesterol depletion prevented the TNF-alpha-dependent recruitment of TNF-R1 to lipid rafts and inhibited the activation of p42(mapk/erk2), while the activation of NF-kappaB was unaffected. In addition, phosphorylated p42(mapk/erk2), but not receptor interacting protein, I-kappaB kinase-gamma, or I-kappaBalpha was detected in raft-containing fractions following TNF-alpha stimulation. These findings suggest that TNF-R1 is localized to both lipid raft and nonraft regions of the plasma membrane and that each compartment is capable of initiating different signaling responses. We propose that segregation of TNF-R1 to raft and nonraft regions of the plasma membrane contributes to the diversity of signaling responses initiated by TNF-R1.  相似文献   

3.
Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.  相似文献   

4.
The serine-threonine kinase, Akt1/protein kinase Balpha is an important mediator of growth, survival, and metabolic signaling. Recent studies have implicated cholesterol-rich, lipid raft microdomains in survival signals mediated by Akt1. Here we address the role of lipid raft membranes as a potential site of intersection of androgenic and Akt1 signaling. A subpopulation of androgen receptor (AR) was found to localize to a lipid raft subcellular compartment in LNCaP prostate cancer cells. Endogenous AR interacted with endogenous Akt1 preferentially in lipid raft fractions and androgen substantially enhanced the interaction between the two proteins. The association of AR with Akt1 was inhibited by the anti-androgen, bicalutamide, but was not affected by inhibition of phosphoinositide 3-kinase (PI3K). Androgen promoted endogenous Akt1 activity in lipid raft fractions, in a PI3K-independent manner, within 10 min of treatment. Fusion of a lipid raft targeting sequence to AR enhanced localization of the receptor to rafts, and stimulated Akt1 activity in response to androgen, while reducing the cells' dependence on constitutive signaling through PI3K for cell survival. These findings suggest that signals channeled through AR and Akt1 intersect by a mechanism involving formation within lipid raft membranes of an androgen-responsive, extranuclear AR/Akt1 complex. Our results indicate that cholesterol-rich membrane microdomains play a role in transmitting non-genomic signals involving androgen and the Akt pathway in prostate cancer cells.  相似文献   

5.
Triglyceride-rich lipoprotein (TGRL) lipolysis may provide a proinflammatory stimulus to endothelium. Detergent-resistant plasma membrane microdomains (lipid rafts) have a number of functions in endothelial cell inflammation. The mechanisms of TGRL lipolysis-induced endothelial cell injury were investigated by examining endothelial cell lipid rafts and production of reactive oxygen species (ROS). Lipid raft microdomains in human aortic endothelial cells were visualized by confocal microscopy with fluorescein isothiocyanate-labeled cholera toxin B as a lipid raft marker. Incubation of Atto565-labeled TGRL with lipid raft-labeled endothelial cells showed that TGRL colocalized with the lipid rafts, TGRL lipolysis caused clustering and aggregation of lipid rafts, and colocalization of TGRL remnant particles on the endothelial cells aggregated lipid rafts. Furthermore, TGRL lipolysis caused translocation of low-density lipoprotein receptor-related protein, endothelial nitric oxide synthase, and caveolin-1 from raft regions to nonraft regions of the membrane 3 h after treatment with TGRL lipolysis. TGRL lipolysis significantly increased the production of ROS in endothelial cells, and both NADPH oxidase and cytochrome P-450 inhibitors reduced production of ROS. Our studies suggest that alteration of lipid raft morphology and composition and ROS production could contribute to TGRL lipolysis-mediated endothelial cell injury.  相似文献   

6.
The Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. The major intracellular signaling systems activated by Tie2 in response to Angiopoietin-1 (Ang1) include the Akt and Erk1/2 pathways. Here, we investigated the role of cholesterol-rich plasma membrane microdomains (lipid rafts) in Tie2 regulation. Tie2 could not be detected in the lipid raft fraction of human umbilical vein endothelial cells (HUVECs) unless they were first stimulated with Ang1. After stimulation, a minor fraction of Tie2 associated tightly with the lipid rafts. Treatment of HUVECs with the lipid raft disrupting agent methyl-β-cyclodextrin selectively inhibited Ang1-induced Akt phosphorylation, but not Erk1/2 phosphorylation. It has been reported that inhibition of FoxO activity is an important mechanism for Ang1-stimulated Tie2-mediated endothelial function. Consistent with this, we found that phosphorylation of FoxO mediated by Tie2 activation was attenuated by lipid raft disruption. Therefore, we propose that lipid rafts serve as signaling platforms for Tie2 receptor tyrosine kinase in vascular endothelial cells, especially for the Akt pathway.  相似文献   

7.
The plasma membrane contains ordered lipid domains, commonly called lipid rafts, enriched in cholesterol, sphingolipids, and certain signaling proteins. Lipid rafts play a structural role in signal initiation by the high affinity receptor for IgE. Cross-linking of IgE-receptor complexes by antigen causes their coalescence with lipid rafts, where they are phosphorylated by the Src family tyrosine kinase, Lyn. To understand how lipid rafts participate in functional coupling between Lyn and FcepsilonRI, we investigated whether the lipid raft environment influences the specific activity of Lyn. We used differential detergent solubility and sucrose gradient fractionation to isolate Lyn from raft and nonraft regions of the plasma membrane in the presence or absence of tyrosine phosphatase inhibitors. We show that Lyn recovered from lipid rafts has a substantially higher specific activity than Lyn from nonraft environments. Furthermore, this higher specific activity correlates with increased tyrosine phosphorylation at the active site loop of the kinase domain. Based on these results, we propose that lipid rafts exclude a phosphatase that negatively regulates Lyn kinase activity by constitutive dephosphorylation of the kinase domain tyrosine residue of Lyn. In this model, cross-linking of FcepsilonRI promotes its proximity to active Lyn in a lipid raft environment.  相似文献   

8.
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.  相似文献   

9.
Many lines of evidence show that membranes contain microdomains, "lipid rafts", that are different from the rest of the membrane in specific lipid and protein composition. In several biological systems, they were shown to be necessary for trafficking and signal transduction. Here, we investigate if lipid rafts have a role in the regulation of the G protein-mediated pathway underlying vertebrate phototransduction. Photoreceptor membranes contain detergent-resistant membrane (DRM) rafts. Rhodopsin and cGMP phosphodiesterase are found in raft and nonraft portions of the membrane; guanylate cyclase is found exclusively in the raft. Distribution of these proteins does not change in the light or dark. In contrast, the G protein transducin, the RGS9-1-Gbeta5L complex, and the p44 isoform of arrestin undergo dramatic translocation to the raft upon illumination. Phosphorylation of RGS9-1 occurs exclusively in the raft. GTPgammaS or pertussis toxin prevent the light-mediated translocation of transducin and RGS9-1, whereas AlF(minus sign)(4) causes both proteins to move to the raft in the dark. This shows that the Galphat-RGS9-1-Gbeta5L complex has the highest affinity to rafts in the transition state of the GTPase. GTPgammaS binds to transducin at a significantly slower rate in the raft, indicating that this translocation results in a reduced rhodopsin-transducin coupling. Thus, an external signal can rearrange components of a G protein pathway in specific domains of the cell membrane, changing its signaling properties. These findings could reveal a novel mechanism utilized by the cells for regulation of G protein-mediated signal transduction.  相似文献   

10.
Tumor necrosis factor (TNF)-alpha-induced activation of RhoA, mediated by TNF receptor 1 (TNFR1), is a prerequisite step in a pathway that leads to increased 20-kDa light chain of myosin (MLC20) phosphorylation and airway smooth muscle contraction. In this study, we have investigated the proximal events in TNF-alpha-induced RhoA activation. TNFR1 is localized to both lipid raft and nonraft regions of the plasma membrane in primary human airway smooth muscle cells. TNF-alpha engagement of TNFR1 recruited the adaptor proteins TRADD, TRAF-2, and RIP into lipid rafts and activated RhoA, NF-kappaB, and MAPK pathways. Depletion of cholesterol from rafts with methyl-beta-cyclodextrin caused a redistribution of TNFR1 to nonraft plasma membrane and prevented ligand-induced RhoA activation. By contrast, TNF-alpha-induced activation of NF-kappaB and MAPKs was unaffected by methyl-beta-cyclodextrin indicating that, in airway smooth muscle cells, activation of these pathways occurred independently of lipid rafts. Targeted knockdown of caveolin-1 completely abrogated TNF-alpha-induced RhoA activation, identifying this raft-resident protein as a positive regulator of the activation process. The signaling adaptors TRADD and RIP were also found to be necessary for ligand-induced RhoA activation. Taken together, our results suggest that in airway smooth muscle cells, spatial compartmentalization of TNFR1 provides a mechanism for generating distinct signaling outcomes in response to ligand engagement and define a mechanistic role for lipid rafts and caveolin-1 in TNF-alpha-induced activation of RhoA.  相似文献   

11.
Lipid rafts are membrane microdomains distinct from caveolae, whose functions in polypeptide growth factor signalling remain unclear. Here we show that in small cell lung cancer (SCLC) cells, specific growth factor receptors such as c-Kit associate with lipid rafts and that these domains play a critical role in the activation of phosphoinositide 3-kinase (PI3K) signalling. The class IA p85/p110alpha associated with Src in lipid rafts and was activated by Src in vitro. Lipid raft integrity was essential for Src activation in response to stem cell factor (SCF) and raft disruption selectively inhibited activation of protein kinase B (PKB)/Akt in response to SCF stimulation. Moreover, inhibition of Src kinases blocked PKB/Akt activation and SCLC cell growth. The use of fibroblasts with targeted deletion of the Src family kinase genes confirmed the role of Src kinases in PKB/Akt activation by growth factor receptors. Moreover a constitutively activated mutant of Src also stimulated PI3K/Akt in lipid rafts, indicating that these microdomains play a role in oncogenic signalling. Together our data demonstrate that lipid rafts play a key role in the activation of PI3K signalling by facilitating the interaction of Src with specific PI3K isoforms.  相似文献   

12.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

13.
The mammalian type I GNRH receptor (GNRHR) is unique among G protein-coupled receptors (GPCRs) because of the absence of an intracellular C-terminus. Previously, we have found that the murine GNRHR is constitutively localized to low-density membrane microdomains termed lipid rafts. As such, association of the GNRHR with lipid rafts may reflect both a loss (C-terminus) and a gain (raft association address) of structural characteristics. To address this, we fused either the full-length C-terminus from the nonraft-associated LH receptor (LHCGR; GNRHR-LF) or a truncated (t631) LHCGR C-terminus to the GNRHR. These chimeric receptors are trafficked to the plasma membrane, bind ligand, and display increased agonist-induced receptor internalization, but they do not partition into lipid rafts. Thus, a heterologous C-terminus from a nonraft-associated GPCR redirects localization of the GNRHR to nonraft domains. In contrast to the murine GNRHR, the catfish GNRHR (cfGNRHR) possesses an intracellular C-terminus. We found that the cfGNRHR was localized to lipid rafts and that the cfGNRHR C-terminus did not alter raft localization of the mammalian receptor. Consistent with placement in different lipid microenvironments within the plasma membrane, fluorescence recovery after photobleaching revealed different lateral diffusion phenotypes of the raft-associated GNRHR and cfGNRHR versus the nonraft-associated GNRHR-LF fusion protein. We conclude that whereas an intracellular C-terminus is capable of redirecting the GNRHR to nonraft compartments, this is not a generalized feature of GPCR C-terminal tails. Thus, constitutive raft localization of the GNRHR is not simply a result of the loss of an intracellular C-terminus.  相似文献   

14.
动物肝是具有极强再生能力的器官,研究并阐明肝再生的机制可为肝移植等与肝损伤相关的疾病治疗提供理论依据.质膜包括“脂筏(lipid rafts)”和“质膜微囊(caveolae)”的微区,具有参与胞吞胞饮、信号转导、运输胆固醇等重要功能.肝再生过程中,肝质膜微区脂筏蛋白质受到内部调控的影响会发生改变. 捕获脂筏微区信号蛋白分布的变化,对于理解和阐明肝再生过程中信号通路途径有重要意义.本研究应用成熟的大鼠2/3肝切除模型结合蔗糖密度梯度离心法,提取假手术组与肝再生组大鼠肝细胞质膜,并进一步纯化获得质膜微区蛋白质.通过SDS-PAGE分离以及ESI-Q-TOF质谱鉴定,对获得的质膜微区蛋白质进行差异分析. 结果显示,有30个微区蛋白质差异表达,其中13个上调、17个下调.生物信息学分析表明,所鉴定到的蛋白质主要参与细胞增殖、程序性死亡、细胞凋亡等调控,同时涉及到与肝再生密切相关的血管生成等信号通路.本文为质膜微区蛋白质的研究提供了方法上的参考以及相关基础数据,为后续临床肝再生的研究奠定了一定的基础.  相似文献   

15.
We and others have recently obtained data suggesting that cytokine-STAT signaling in many different cell-types is a chaperoned pathway initiated at the level of specialized plasma membrane microdomains called "rafts" (the "raft-STAT signaling hypothesis"). These findings are of broad significance in that all cytokines and growth factors initiate signaling in target cells by interacting with respective cell-surface receptors. The new data suggest that raft microdomains represent the units of function at the cell-surface through which ligand-stimulated STAT signaling is initiated. Moreover, recent evidence shows the involvement of chaperone proteins in regulating the STAT signaling pathway. These chaperones include the human homolog of the tumorous imaginal disc 1 protein (hTid1) which associates with Janus kinase 2 (JAK2) at the level of the plasma membrane, heat shock protein 90 (HSP90) which associates with STAT3 and STAT1 proteins in caveolin-1-containing raft and cytoplasmic complexes, and glucose regulated protein 58 (GRP58/ER-60/ERp57), a thiol dependent protein-disulfide isomerase, found in association with STAT3 "statosome" complexes in the cytosol and in the raft fraction. We suggest a function of the HSP90 chaperone system in preserving IL-6/STAT3 signaling in liver cells in the context of fever. The identification and function of protein partners associated with specific STAT species in rafts and in cytosolic complexes, and in the efficient departure of cytokine-activated STATs from the cytosolic face of rafts towards the cell nucleus are now areas of active investigation.  相似文献   

16.
Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.  相似文献   

17.
Membrane lipid rafts play a key role in immune cell activation by recruiting and excluding specific signaling components of immune cell surface receptors upon the receptor engagement. Despite this, the role of these microdomains in the regulation of osteoclasts as controlled by receptor activator of nuclear factor kappaB (RANK) has yet to be established. In this study, we demonstrate that the raft microdomain expression plays an essential role in osteoclast function and differentiation. Expression of raft component flotillin greatly increased during osteoclast differentiation, whereas engagement of RANK induced the translocation of tumor necrosis factor receptor-associated factor 6 to rafts where Src was constitutively resident. Disruption of rafts blocked TRAF6 translocation and Akt activation by RANK ligand in osteoclasts and further reduced the survival of osteoclasts. Actin ring formation and bone resorption by osteoclasts were also found to require the integrity of rafts. Our observations demonstrate for the first time that RANK-mediated signaling and osteoclast function are critically dependent on the expression and integrity of raft membrane microdomains.  相似文献   

18.
Dynamics of putative raft-associated proteins at the cell surface   总被引:6,自引:0,他引:6  
Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.  相似文献   

19.
Flotillin-1 is a lipid raft-associated protein that has been implicated in various cellular processes. We examined the subcellular distribution of flotillin-1 in different cell types and found that localization is cell type-specific. Flotillin-1 relocates from a cytoplasmic compartment to the plasma membrane upon the differentiation of 3T3-L1 adipocytes. To delineate the structural determinants necessary for its localization, we generated a series of truncation mutants of flotillin-1. Wild type flotillin-1 has two putative hydrophobic domains and is localized to lipid raft microdomains at the plasma membrane. Flotillin-1 fragments lacking the N-terminal hydrophobic stretch are excluded from the lipid raft compartments but remain at the plasma membrane. On the other hand, mutants with the second hydrophobic region deleted fail to traffic to the plasma membrane but are instead found in intracellular granule-like structures. Flotillin-1 specifically interacts with the adaptor protein CAP, the Src family kinase Fyn, and cortical F-actin in lipid raft microdomains in adipocytes. Furthermore, CAP and Fyn associate with different regions in the N-terminal sequences of flotillin-1. These results furthered our understanding for how flotillin-1 can function as a molecular link between lipid rafts of the plasma membrane and a multimeric signaling complex at the actin cytoskeleton.  相似文献   

20.
Lipid rafts are plasma membrane microdomains enriched in sphingolipids and cholesterol. These domains have been suggested to serve as platforms for various cellular events, such as signaling and membrane trafficking. However, little is known about the distribution and dynamics of lipids in these microdomains. Here we report investigations carried out using recently developed probes for the lipid components of lipid rafts: lysenin, a sphingomyelin-binding protein obtained from the coelomic fluid of the earthworm Eisenia foetida; and the fluorescein ester of poly(ethyleneglycol) cholesteryl ether (fPEG-Chol), which partitions into cholesterol-rich membranes. Lysenin reveals that the organization of sphingomyelin differs between different cell types and even between different membrane domains within the same cell. When added to live cells, fPEG-Chol is distributed exclusively on the outer leaflet of the plasma membrane and is clustered dynamically upon activation of receptor signaling. The surface-bound fPEG-Chol is slowly internalized via a clathrin-independent pathway into endosomes with lipid raft markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号