首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: We investigated the ultrastructural and molecular interactions between ‘Candidatus Phytoplasma mali’ and the apple endophyte Epicoccum nigrum in the experimental host Catharanthus roseus to determine whether inoculation of endophyte could trigger defence reactions in the host. Methods and Results: Apple proliferation (AP) symptom severity was evaluated in AP‐grafted plants that were treated by E. nigrum and compared with untreated controls. Phytoplasma concentration was quantified by real‐time PCR in treated and untreated plants. Ultrastructural observations revealed that in endophyte‐treated periwinkles, modifications to phytoplasmas, such as irregular shape and cytoplasm confined to the periphery of the cell, and plant cytological changes, such as abundant callose depositions and P‐protein aggregations in the sieve elements, occurred. AP‐grafted plants that were treated by the endophyte (E. nigrum) showed a reduction in symptom severity; in particular, flowers appeared normal in shape and size, when compared with uninfected controls. Real‐time PCR indicated that phytoplasma concentration in AP‐grafted plants treated with E. nigrum was about 2·8 times lower than that in untreated ones. Conclusions: These results demonstrated that the inoculation with E. nigrum influenced phytoplasma infection in C. roseus plants; plant ultrastructural modifications allowed us to hypothesize an enhancing host defence response. Significance and Impact of the Study: At present, curative protocols against this phytoplasma are not available. Alternative approaches are thus required to reduce disease spread. Our study might represent a first step in the clarification of plant–phytoplasma–endophyte relationships to find possible strategies for the control of phytoplasma diseases.  相似文献   

2.
Aim: To elucidate the possible mechanism of phytoplasma elimination from periwinkle shoots caused by indole‐3‐butyric acid (IBA) treatment. Methods and Results: It has been shown that a transfer of in vitro‐grown phytoplasma‐infected Catharanthus roseus (periwinkle) plantlets from medium supplemented with 6‐benzylaminopurine (BA) to one supplemented with IBA can induce remission of symptoms and even permanent elimination of ‘Candidatus Phytoplasma asteris’ reference strain HYDB. Endogenous auxin levels and general methylation levels in noninfected periwinkles, periwinkles infected with two ‘Candidatus Phytoplasma’ species and phytoplasma‐recovered periwinkles were measured and compared. After the transfer from cytokinin‐ to auxin‐containing media, healthy shoots maintained their phenotype, methylation levels and hormone concentrations. Phytoplasma infection caused a change in the endogenous indole‐3‐acetic acid to IBA ratio in periwinkle shoots infected with two ‘Candidatus Phytoplasma’ species, but general methylation was significantly changed only in shoots infected with ‘Ca. P. asteris’, which resulted in the only phytoplasma species eliminated from shoots after transfer to IBA‐containing medium. Both phytoplasma infection and treatment with plant growth regulators influenced callose deposition in phloem tissue, concentrations of photosynthetic pigments and soluble proteins, H2O2 levels and activities of catalase (CAT) and ascorbate peroxidase (APX). Conclusion: Lower level of host genome methylation in ‘Ca. P. asteris’‐infected periwinkles on medium supplemented with BA was significantly elevated after IBA treatment, while IBA treatment had no effect on cytosine methylation in periwinkles infected with ‘Candidatus Phytoplasma ulmi’ strain EY‐C. Significance and Impact of the Study: Hormone‐dependent recovery is a distinct phenomenon from natural recovery. As opposed to spontaneously recovered plants in which elevated peroxide levels and differential expression of peroxide‐related enzymes were observed, in hormone‐dependent recovery changes in global host genome, methylation coincide with the presence/absence of phytoplasma.  相似文献   

3.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

4.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

5.
Apple proliferation (AP) is an important disease and is prevalent in several European countries. The causal agent of AP is ‘Candidatus Phytoplasma mali’ (‘Ca. Phytoplasma mali’). In this work, isolates of ‘Ca. Phytoplasma mali’ were detected and characterized through polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses of 16S rRNA gene and non‐ribosomal DNA fragment. The presence of three AP subtypes (AT‐1, AT‐2 and AP‐15) was identified in 31 symptomatic apple trees and two samples each constituted by a pool of five insects, collected in north‐western Italy, where AT‐1 is a dominant subtype. Subsequent nucleotide sequence analysis of the PCR‐amplified 1.8 kb (P1/P7) fragment, containing the 16S rDNA, the 16S–23S intergenic ribosomal region and the 5′‐end of the 23S rDNA, revealed the presence of at least two phytoplasmal genetic lineages within the AT‐1 subtype, designed AT‐1a and AT‐1b. Moreover, in silico single nucleotide polymorphism (SNP) analysis based on 16S rDNA sequence can differentiate AT‐1 subtype from AT‐2 and AP‐15 subtypes. Our data showed a high degree of genetic diversity among ‘Ca. Phytoplasma mali’ population in north‐western Italy and underlined the possible use of the 16S rDNA analysis for the identification and the geographical origin assignation of isolates of AP phytoplasma. Molecular markers on 16S rDNA, here identified, could be useful for studying the epidemiology of AP disease.  相似文献   

6.
Amaranth (Amaranthus retroflexus L.) is a common weed that grows vigorously in orchards, roadside verges, fields, woods and scrubland in China. In 2009, phytoplasma disease surveys were made in orchards in Beijing, China, and stem/leaf tissues were collected from asymptomatic amaranths. Direct PCR using universal phytoplasma primers P1/P7 detected 16S rRNA gene sequences in every DNA sample extracted from the symptomless amaranths. Sequence alignment and phylogenetic analyses of the 16S rRNA gene determined that the amaranth phytoplasma strain was related to ‘Candidatus Phytoplasma ziziphi’. Furthermore, virtual RFLP pattern analysis showed that the amaranth phytoplasma belonged to the 16SrV‐B subgroup. This is the first report of symptomless plants containing a ‘Candidatus Phytoplasma ziziphi’‐related strain.  相似文献   

7.
This study focused on evaluating the genetic diversity among ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) populations in orchards of north‐western Italy, where apple proliferation (AP) disease is widespread and induces severe economic losses. ‘Ca. P. mali’ was detected through restriction fragment length polymorphism (RFLP) analysis of PCR‐amplified 16S rDNA in 101 of 114 samples examined. Collective RFLP patterns, obtained by restriction analyses of four amplified genomic segments (16S/23S rDNA, PR‐1, PR‐2 and PR‐3 non‐ribosomal region, ribosomal protein genes rplVrpsC and secY gene), revealed the presence of 12 distinct genetic lineages among 60 selected representative ‘Ca. P. mali’ isolates, underscoring an unexpected high degree of genetic heterogeneity among AP phytoplasma populations in north‐western Italy. Prevalence of distinct genetic lineages in diverse geographic regions opens new interesting avenues for studying the epidemiology of AP disease. Furthermore, lineage‐specific molecular markers identified in this work could be useful for investigating the biological life cycle of ‘Ca. P. mali’.  相似文献   

8.
Potato plants with symptoms suggestive of potato purple top disease (PPTD) occurred in the central, western and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7 followed by primer pairs R16F2n/R16R2 and fU5/rU3 for phytoplasma detection. Using primer pairs R16F2n/R16R2 and fU5/rU3 in nested PCR, the expected fragments were amplified from 53% of symptomatic potatoes. Restriction fragment length polymorphism (RFLP) analysis using AluI, CfoI, EcoRI, KpnI, HindIII, MseI, RsaI and TaqI restriction enzymes confirmed that different phytoplasma isolates caused PPTD in several Iranian potato‐growing areas. Sequences analysis of partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma solani’, ‘Ca. Phytoplasma astris’ and ‘Ca. Phytoplasma trifolii’ are prevalent in potato plants showing PPTD symptoms in the production areas of central, western and north‐western regions of Iran, although ‘Ca. Phytoplasma solani’ is more prevalent than other phytoplasmas. This is the first report of phytoplasmas related to ‘Ca. Phytoplasma astris’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ causing PPTD in Iran.  相似文献   

9.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

10.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

11.
During 2015–2016, wooden and herbaceous plants growing in parks, boulevards, fields, gardens and forests in Khuzestan province, southwestern Iran, were visually inspected for symptoms resembling phytoplasma. Fifty‐one symptomatic samples from nine different species and one symptomless sample from each plant were collected. Leaf midribs, petioles and the parts of stem cambium were separated and freeze‐dried. Total DNA was extracted using CTAB‐based method and tested for phytoplasma using a nested PCR assay. The expected size amplicons of 16S rDNA were sequenced and compared to those of reference phytoplasmas by BLASTn search and phylogenetic analysis. The consensus 16S rDNA sequence of the detected phytoplasma in narrow cattail related to reference phytoplasma group 16SrVI, “Candidatus Phytoplasma trifolii” while in the other plants were related to reference phytoplasma subgroup 16SrII–D, “Candidatus Phytoplasma aurantifolia.” All isolates showed 98%–99% sequence identity to members of their reference groups. To our knowledge, this is the first report of “Candidatus Phytoplasma aurantifolia”‐related strains infecting the plants of Acacia salicina, Alternanthera ficoidea, Melaleuca citrine, Citrus aurantium throughout the world and Celosia christata in Iran. Furthermore, this study is the first to report the association of a “Candidatus Phytoplasma trifolii”‐related strain with Typha angustifolia worldwide.  相似文献   

12.
Given the potential for urban green spaces to provide fresh and healthy environments for humans, exploring the issues that threaten plants in these places is crucial. Phytoplasma-related symptoms were encountered on some plants in urban green spaces in the province of Kerman, southeastern Iran, between 2017 and 2019. Affected periwinkles and petunias exhibited phytoplasma disease symptoms, including virescence, phyllody, and witches'-broom. However, ball or disc-like shoot proliferation symptoms were noticed on the trunks and branches of pine trees. PCR was performed with phytoplasma-detecting universal primers, targetting and amplifying the 16S rRNA gene, and determining whether phytoplasmas are implicated in the symptomatic plants. The infection of the symptomatic plants was confirmed using nested-PCR amplification of expected DNA sizes for phytoplasmas. No product, however, was amplified from sampled symptomless plants. The sequencing of nested-PCR products was performed to obtain sequences encasing the standard F2nR2 fragments. The resulted sequences were submitted to iPhyClassifier, the universal phytoplasma classification platform, for the taxonomic assignment of the found phytoplasmas compared with previously identified ‘Candidatus Phytoplasma’ species, groups, and subgroups. The results revealed that phytoplasma strains related to the species ‘Ca. P. trifolii’ (16SrVI-A subgroup) infect periwinkles and pines. However, strains from the species ‘Ca. P. aurantifolia’ (16SrII-D subgroup) and ‘Ca. P. phoenicium’ (16SrIX-C subgroup) were found in petunias and periwinkles, respectively. To the best of our knowledge, phytoplasmas from the 16SrVI-A and 16SrII-D subgroups are the first reported to infect these plants in Kerman province, while a related strain from the subgroup 16SrIX-C is the first recorded to infect periwinkles in Iran and the second in the world.  相似文献   

13.
The stolbur phytoplasma ‘Candidatus Phytoplasma solani’ is responsible for the grapevine disease ‘bois noir’ affecting a number of wine‐growing areas in Europe. Transmission of stolbur phytoplasma to different laboratory hosts can be difficult due to the requirement of transmitting insect vectors or parasite plants. Here, heterologous grafting was used as an alternative technique for transmission of common and strongly symptomatic stolbur genotypes CPsM4_At1 and CPsM4_At6 of ‘Ca. P. solani’ to experimental host plants such as Catharanthus roseus and tomato making phytoplasma strains more accessible for molecular and experimental investigations in different plant species. Transmission was confirmed by quantitative PCR, microscopy and nested PCR followed by marker gene sequencing. In our study, the transmission of different genotypes of ‘Ca. P. solani’ resulted in distinguishable symptom development in the laboratory host C. roseus. Symptom development in grafted rootstock was observed three to 7 weeks after heterologous grafting. Survival of the graft unit was influenced by the presence of ‘Ca. P. solani’ in the scions and was clearly reduced in phytoplasma free scion – rootstock combinations.  相似文献   

14.
Royal Palms (Roystonea regia) with symptoms such as severe chlorosis, stunting, collapse of older fronds and general decline were observed in the state of Selangor, Malaysia. Using polymerase chain reaction (PCR) amplification with phytoplasma universal primer pair P1/P7 followed by R16F2N/R16R2 and fU5/rU3 as nested PCR primer pairs, all symptomatic plants tested positively for phytoplasma. Results of phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with Royal Palm yellow decline (RYD) was an isolate of ‘Candidatus Phytoplasma asteris’ belonging to a new 16SrI‐subgroup. These results show that Roystonea regia is a new host for the aster yellows phytoplasma (16SrI). This is the first report on the presence of 16SrI phytoplasma on Royal Palm trees in Malaysia.  相似文献   

15.
Almond witches'‐broom (AlmWB) disease, associated with ‘Candidatus Phytoplasma phoenicium’, is an emerging threat with real risk of introduction in Euro‐Mediterranean Countries. Its rapid spread over large geographical areas suggests the presence of efficient insect vector(s). In the present work, a survey on cixiids was carried out in Lebanon in the years 2010–2013 in AlmWB‐infested almond and nectarine orchards. Insects were collected by means of different methods, identified with a stereo microscope, and analysed for phytoplasma identification through 16S rDNA PCR‐based amplification and nucleotide sequence analyses. Preliminary transmission trials were performed with the most abundant species. A list of the cixiid genera and species present in the studied area is given as well as some information about their biology. ‘Ca. Phytoplasma phoenicium’ strains were detected in the genera Cixius, Tachycixius, Eumecurus and Hyalesthes. Preliminary trials revealed that Tachycixius specimens were able to transmit the detected strains to healthy peach potted seedlings. Further studies are required to better clarify the taxonomic status and the bio‐ethology of collected planthoppers and deeply study their role as phytoplasma vectors.  相似文献   

16.
Potato plants showing symptoms suggestive of potato witches’‐broom disease including witches’‐broom, little leaf, stunting, yellowing and swollen shoots formation in tubers were observed in the central Iran. For phytoplasma detection, Polymerase Chain Reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7, followed by primer pair R16F2n/R16R2. Random fragment length polymorphism analysis of potato phytoplasma isolates collected from different production areas using the CfoI restriction enzyme indicated that potato witches’‐broom phytoplasma isolate (PoWB) is genetically different from phytoplasmas associated with potato purple top disease in Iran. Sequence analysis of the partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma trifolii’ is associated with potato witches’‐broom disease in Iran. This is the first report of potato witches’‐broom disease in Iran.  相似文献   

17.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

18.
Transmission tests were conducted with field‐collected Bunchy Top Symptoms (BTS) phytoplasma‐infected specimens of Empoasca papayae. BTS developed in all eight inoculated papayas 3 months later. The BTS phytoplasma was identified in six of eight inoculated papayas, whose partial 16S rRNA sequence (GenBank Accession no. FJ6492000 ) was 99.9% identical with those from the collected papayas (GenBank Accession no FJ649198 ) and E. papayae (GenBank Accession no. FJ649199 ), all of which are members of group 16SrII, ‘Candidatus Phytoplasma aurantifolia’. Results confirmed the ability of E. papayae to transmit the BTS phytoplasma.  相似文献   

19.
During autumn, an extensive survey was conducted in pepper (Capsicum annum L.) in intensive cultivation areas of four provinces in southeastern Turkey (Adana, Kahramanmara?, Mersin and ?anl?urfa) in order to identify the causal agent (s) of phytoplasma‐like symptoms (chlorosis, little‐leaf, short internodes and stunting). DNA amplification by PCR and RFLP analysis using EcoRI restriction enzyme confirmed the presence of phytoplasmas in ?anl?urfa and Mersin, and consequently their possible association with the symptoms. Sequencing and phylogenetic analysis revealed that the isolate from ?anl?urfa had 99% sequence identity with “Candidatus Phytoplasma trifolii” (16SrVI) and is a member of the clover proliferation group (16SrVI‐A). Additionally, the isolate from Mersin had 96% sequence identity with “Candidatus Phytoplasma asteris” (16SrI). Importantly, gene sequence of the Mersin isolate shared <97.5% similarity to previously discovered “Ca. Phytoplasma” species. Consequently, the phytoplasma detected from Mersin could represent a new “Ca. Phytoplasma” species and to our knowledge, this is the first report of asteris‐like phytoplasmas infecting pepper in Turkey.  相似文献   

20.
A new cauliflower disease characterised by the formation of leaf‐like inflorescences and malformed flowers occurred in a seed production field located in Yunnan, a southwest province of China. Detection of phytoplasma‐characteristic 16S rRNA gene sequences in DNA samples from diseased plants linked the cauliflower disease to phytoplasmal infection. Results from phylogenetic and virtual restriction fragment length polymorphism analyses of the 16S rRNA gene sequence indicated that the cauliflower‐infecting agent is a ‘Candidatus Phytoplasma aurantifolia’‐related strain and is a new member of the peanut witches'‐broom phytoplasma group, subgroup A (16SrII‐A). Multilocus genotyping showed close genetic relationship between this cauliflower phytoplasma and a broad host range phytoplasma lineage found only in East Asia thus far. Molecular markers present in the secY and rp loci distinguished this phytoplasma from other members of the subgroup 16SrII‐A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号