首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
The regulation of the levansucrase gene sacB was studied in Bacillus subtilis strains. Fusions were constructed in which genes of cytoplasmic proteins such as lacZ were placed immediately downstream from sacR, the regulatory region located upstream from sacB. These fusions were introduced in mutants affected in sacB regulation. In all cases the marker gene was affected in the same way as sacB by the genetic context. This result is of particular interest for the sacU pleiotropic mutations, which affect sacB expression and other cellular functions such as the synthesis of several exocellular enzymes. We also showed that strains harboring sacU+ or sacU-hyperproducing alleles contained different amounts of sacB mRNA, which was proportional to their levansucrase secretion. We concluded that the sacU gene does not affect sacB expression at the level of secretion but acts on a target within sacR. We discuss the possibility that sacU acts on a part of sacR, a homologous copy of which was found upstream from the gene of another sacU-dependent secreted enzyme of B. subtilis, beta-glucanase.  相似文献   

2.
The structural gene sacB encoding B. subtilis levansucrase, a secreted enzyme, expresses in E. coli. E. coli hosts of the sacB gene are poisoned by sucrose. This property allowed a powerful selection of mutants affected in the cloned gene. The plasmidic mutations were readily introduced in the B. subtilis chromosome. Using a collection of plasmids bearing various deletions extending in sacB we developed a technique of deletion mapping based on plasmid integration in the chromosome of B. subtilis. A generalization of this technique is discussed.  相似文献   

3.
It has been generally accepted that the structural sacB gene of Bacillus subtilis levansucrase encodes a 50,000 Da extracellular protein. However, examination of the DNA sequence of the sacB flanking regions shows a putative open reading frame coding for a 20 amino acid peptide downstream immediately following the terminal TAA stop codon. By site-directed mutagenesis we have changed this stop codon to a glutamine codon. This stop codon readthrough leads to the synthesis and secretion by B. subtilis of a levansucrase possessing an extended polypeptide chain. The extended levansucrase has a molecular weight of 53,000 with a new carboxyl-terminus, rich in basic and hydrophobic amino acids and possessing one cysteine residue. This enzyme synthesizes fructosyl polymer levan of higher molecular weight than the shorter levansucrase. The increase in molecular weight was achieved by increasing the number of branches. These results suggest that the C-terminal part of the enzyme plays a specific role in the degree of branching of the synthesized polymer. Moreover, the extended enzyme is able to form an active dimer from two polypeptide chains linked by an S-S bridge.  相似文献   

4.
The expression of the structural gene (sacB) encoding Bacillus subtilis levansucrase in two gram-positive soil bacteria, Corynebacterium glutamicum ATCC 13032 and Streptomyces lividans 1326, was investigated. sacB expression in the presence of sucrose is lethal to C. glutamicum but not to S. lividans. While S. lividans secretes levansucrase into the medium, we could show that the enzyme is retained by C. glutamicum cells. Our results imply that the sacB gene can be used as a positive selection system in coryneform bacteria.  相似文献   

5.
The gene encoding levansucrase (LVS) from Bacillus amyloliquefaciens (sacB[BamP]) was isolated, sequenced and expressed in Bacillus subtilis. Analysis of the nucleotide sequence of sacB[BamP] reveals extensive homology with that of the B. subtilis LVS-encoding gene in the promoter and coding region. The sacB[BamP] gene cloned in a multicopy plasmid is induced by sucrose in B. subtilis.  相似文献   

6.
Expression of the Bacillus subtilis or Bacillus amyloliquefaciens sacB gene in the presence of sucrose is lethal for a variety of bacteria. Sucrose-induced lethality can be used to select for inactivation of sacB by insertion of heterologous DNA in sensitive bacteria. This procedure has not been applicable to B. subtilis heretofore because expression of wild-type sacB is not detrimental to B. subtilis. The W29 mutation in the B. amyloliquefaciens sacB gene interferes with processing of the levansucrase signal peptide. The W29 mutation does not affect growth of B. subtilis in media lacking sucrose. However, this mutation inhibited growth of B. subtilis in media containing sucrose. Inactivation of the fructose polymerase activity encoded by sacB indicated that levan production was essential for sucrose-induced lethality. As a result, it was possible to select for cloned DNA in B. subtilis by insertional inactivation of the mutant sacB gene located on a multicopy plasmid vector in medium containing sucrose.  相似文献   

7.
8.
A clone bearing the structural gene sacB, coding for the exoenzyme levansucrase, was isolated from a library of Bacillus subtilis DNA that was cloned in phage lambda charon 4A on the basis of the transforming activity of the chimeric DNA. This lambda clone also was found to contain the sacR and smo loci. Subcloning the sacB-sacR region in plasmid pBR325 resulted in a clone which directed levansucrase synthesis in Escherichia coli. The nucleotide sequence coding for the secreted protein was localized on the physical map of the cloned DNA.  相似文献   

9.
Sucrose induces two saccharolytic enzymes in Bacillus subtilis, an intracellular sucrase and an extracellular levansucrase, encoded by sacA and sacB, respectively. It was previously shown that the sacY gene encodes a positive regulator involved in a sucrose-dependent antitermination upstream from the sacB coding sequence. We show here that the sacY product is not absolutely required for sacB induction: a weak but significant induction can be observed in strains harboring a sacY deletion. The sacY-independent induction was altered by mutations located in the sacP and sacT loci but was observed in both sacU+ and sacU32 genetic backgrounds. These results suggest that B. subtilis has two alternative systems allowing sacB induction by sucrose. Both systems also seem to be involved in sacA induction.  相似文献   

10.
The lacZ gene of Escherichia coli was fused to several positions downstream from the 5' end of the Bacillus subtilis sacB gene, which encodes levansucrase (LS), a sucrose-inducible extracellular enzyme. Effects of hybrid protein expression in B. subtilis were studied. Several fusions were tested, and two significantly interfered with growth of cells and with LS secretion when induced with sucrose. Chromosomal amplification of the fusions, leading to strong expression of the hybrid proteins, completely blocked LS secretion and was lethal for B. subtilis when expression was induced.  相似文献   

11.
Expression in mycobacteria of the structural gene sacB, which encodes the Bacillus subtilis levansucrase, was investigated. sacB expression is lethal to Mycobacterium smegmatis and Mycobacterium bovis BCG in the presence of 10% sucrose. sacB could thus be used as a counterselectable marker in mycobacteria.  相似文献   

12.
A synthetic oligodeoxynucleotide encoding the vasopressin peptide was ligated to the 3' terminal codon of sacB, the structural gene of levansucrase. This gene fusion was integrated into the chromosome of a Bacillus subtilis strain able to overproduce levansucrase. The extracellular production of the hybrid protein, consisting of the whole levansucrase primary sequence plus the nine amino acids of the vasopressin peptide added at the C-terminal end, represented 50-55% of that found for the wild-type levansucrase (20 mg l-1). The purified hybrid protein displayed the same conformational stability, protease insensitivity and enzymic properties as the wild-type levansucrase. However, the rate and the yield of the unfolding-folding transition at the pH and temperature used for bacterial growth were lower in the case of the hybrid protein; the latter also required a higher iron concentration to be completely folded.  相似文献   

13.
14.
15.
中性蛋白酶基因诱导型表达分泌载体的构建   总被引:1,自引:0,他引:1  
利用PCR方法分别扩增出sacB基因的启动子-信号肽序列(sacR)和枯草芽孢杆菌中性蛋白酶的前肽-成熟肽序列,将两者连接后克隆入载体pHP13中,构建了含有中性蛋白酶基因的诱导型表达分泌载体pHP13SN,再将其转化入枯草杆菌DB104,获得基因工程菌DB104(pHP13SN)。中性蛋白酶基因在蔗糖的诱导和sacR的调控下实现了分泌表达,并获得了具有生物学活性的中性蛋白酶。  相似文献   

16.
Growth under conditions of salt stress has important effects on the synthesis of degradative enzymes in Bacillus subtilis. Salt stress strongly stimulates the expression of sacB, encoding levansucrase (about ninefold), and downregulates the expression of aprE, encoding alkaline protease (about sixfold). It is suggested that the DegS-DegU two-component system is involved in sensing salt stress. Moreover, it has been shown that the level of sacB expression strongly depends on the growth conditions; its expression level is about eightfold higher in cells grown on agar plates than in cells grown in liquid medium.  相似文献   

17.
18.
Expression of the cloned levansucrase gene (sacB) was demonstrated in E. coli minicells by assay of the enzyme in crude extracts, SDS-polyacrylamide gel electrophoresis and immunoblotting. The existence of a precursor form of the enzyme of MW 53000 was also demonstrated and confirmed by the DNA sequence corresponding to the NH2 terminal region of the protein.  相似文献   

19.
20.
枯草杆菌碱性蛋白酶基因诱导表达载体的构建   总被引:4,自引:1,他引:3  
以PCR方法扩增sacB基因的启动子-信号肽序列(称为sacR),将其与枯草芽孢杆菌碱性蛋白酶的前肽-成熟酶基因连接后克隆入载体pUBH,构建了含碱性蛋白酶基因的分泌型诱导表达载体pUBS,将其转化枯草芽孢杆菌DB403后,获得基因工程菌DB403(pUBS)。碱性蛋白酶基因在sacR的调控和蔗糖的诱导下实现了表达分泌,获得了具生物学活性的碱性蛋白酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号