首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物通过硝酸盐同化途径以硝酸盐和氨的形式吸收氮元素。硝酸盐的同化是一个受到严格控制的过程,其中两个先后参加反应的酶——硝酸还原酶(NR)和亚硝酸还原酶(NiR)对初级氮的同化起主要调控。在高等植物中,NR和NiR基因的转录及转录后加工受到各种内在和外在因素的影响,翻译后调控是消除亚硝酸盐积累的重要机制。随着分子生物学技术的发展,可以更容易地通过突变体和转基因方式来研究NR和NiR基因的调控。  相似文献   

2.
3.
Cowpea [Vigna unguiculata (L.) Walp. cv. Co 4] seedlings were subjected to a weighted irradiance of 3.2 W m-2 s-1 of biologically effective ultraviolet-B radiation (UV-B, 280–320 nm) and the changes in the kinetic and other characteristics of nitrite reductase (NiR) were recorded. The activity of NiR was hampered by 19 % under UV-B irradiation compared to the control. The UV-B treated plants required higher concentrations of nitrate for the induction of NiR synthesis than the controls. The NiR activity decay kinetics showed that the UV-B treatment significantly lowers the t1/2 of the enzyme, thereby indicating a reduced rate of enzyme turnover. The comparison of kinetic characteristics of nitrate reductase (NR) and NiR under UV-B treatment showed that NiR was not so sensitive to UV-B radiation as NR. As shown by enzyme turnover rates, NiR extracted from plants irradiated by UV-B in situ was less sensitive to UV-B radiation than the enzyme extract subjected to in vitro UV-B irradiation. Though NiR was less damaged by UV-B treatment than NR, subtle changes occurred in its kinetic characteristics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Nitrite reductase from green leaves of corn (Zea mays L.) is eluted from a diethylaminoethyl-cellulose column in one peak of activity by a chloride gradient, while nitrite reductase from scutellum tissue is resolved into two peaks of activity, apparently representing two forms of the enzyme NiR1 and NiR2. One of these (NiR2) elutes at the same concentration of chloride as the leaf nitrite reductase. Roots and etiolated shoots also exhibited both forms of the enzyme, however, lesser amounts of NiR1 is extractable from these tissues than from scutellum. Comparison of green leaf nitrite reductase with NiR2 from scutellum tissue shows similar or identical properties with respect to molecular weight, isoelectric point, electron donor requirements, inhibition properties, pH optima, thermal stability, and pH tolerance. The significance of these similarities in relation to probable differences in the biochemical mechanism of nitrite reduction between leaf and scutellum tissues is discussed. Although ferredoxin is considered, with some reservations, to be the electron donor for nitrite reductase in green tissue, the reductant for nongreen tissue is not known. The possibility that nitrite reductases from green and non-green tissues uses the same electron donor, in vivo, is considered.  相似文献   

5.
The coordinate appearance of the bispecific NAD(P)H-nitrate reductase (NR; EC 1.6.6.2) and nitrite reductase (NiR; EC 1.7.7.1) was investigated in leaves and roots from European white birch seedlings (Betula pendula Roth). Induction by nitrate and light of both enzymes was analyzed by in vitro assays and by measuring NR- and NiR-encoding mRNA pools with homologous cDNAs as probes. When birch seedlings were grown on a medium containing ammonium as the sole nitrogen source, low constitutive expression of NR and NiR was observed in leaves, whereas only NiR was significantly expressed in roots. Upon transfer of the seedlings to a nitrate-containing medium, mRNA pools and activities of NR and NiR dramatically increased in leaves and roots, with a more rapid induction in leaves. Peak accumulations of mRNA pools preceded the maximum activities of NR and NiR, suggesting that the appearance of both activities can be mainly attributed to an increased expression of NR and NiR genes. Expression of NR was strictly light-dependent in leaves and roots and was repressed by ammonium in roots but not in leaves. In contrast with NR, constitutive expression of NiR was not affected by light, and even a slight induction following the addition of nitrate was found in the dark in roots but not in leaves. No effect of ammonium on NiR expression was detectable in both organs. In leaves as well as in roots, NiR was induced more rapidly than NR, which appears to be a safety measure to prevent nitrite accumulation.  相似文献   

6.
Summary Three tobacco nitrite reductase (NiR) cDNA clones were isolated using spinach NiR cDNA as a probe. Sequence analysis and Southern blot hybridization revealed four genes in tobacco. Two of these genes presumably derived from the ancestral species Nicotiana tomentosiformis, the other two from the ancestor N. sylvestris. Northern blot analysis showed that one gene from each ancestral genome was expressed predominantly in leaves, whilst RNA from the other was detected mostly in roots. The accumulation of both leaf and root NiR mRNAs was induced by nitrate and repressed by nitrate- or ammonium-derived metabolites. In addition, the expression of the root NiR gene was detectable in leaves of a tobacco nitrate reductase (NR)-deficient mutant. Thus, the regulation of expression of tobacco NiR genes is comparable to the regulation of expression of barley NR genes.  相似文献   

7.
K. W. Joy 《Plant physiology》1969,44(6):849-853
In L. minor grown in sterile culture, the primary enzymes of nitrate assimilation, nitrate reductase (NR), nitrite reductase (NiR) and glutamate dehydrogenase (GDH) change in response to nitrogen source. NR and NiR levels are low when grown on amino acids (hydrolyzed casein) or ammonia; both enzymes are rapidly induced on addition of nitrate, while addition of nitrite induces NiR only. Ammonia represses the nitrate induced synthesis of both NR and NiR.NADH dependent GDH activity is low when grown on amino acids and high when grown on nitrate or ammonia, but the activities of NADPH dependent GDH and Alanine dehydro-genase (AIDH) are much less affected by nitrogen source. NADH-GDH and AIDH are induced by ammonia, and it is suggested that these enzymes are involved in primary nitrogen assimilation.  相似文献   

8.
Activities of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.3) were measured in cotyledons of sunflower (Helianthus annuus L. cv Peredovic) seedlings during germination and early growth under various external nitrogen sources. The presence of NO 3 - in the medium promoted a gradual increase in the levels of NR and NiR activities during the first 7 d of germination. Neither NR nor NiR activities were increased in a nitrogen-free medium or in media with either NH 4 + or urea as nitrogen sources. Moreover, the presence of NH 4 + did not abolish the NO 3 - -dependent appearance of NR and NiR activities. The increase of NR activity was impaired both by cycloheximide and chloramphenicol, which indicates that both cytoplasmic 80S and plastidic 70S ribosomes are involved in the synthesis of the NR molecule. By contrast, the appearance of NiR activity was only inhibited by cycloheximide, indicating that NiR seems to be exclusively synthesized on the cytoplasmic 80S ribosomes. Glutamine-synthetase activity was also strongly increased by external NO 3 - but not by NH 4 + or urea. The appearance of GS activity was more efficiently suppressed by cycloheximide than chloramphenicol. This indicates that GS is mostly synthesized in the cytoplasm. The cotyledons of the dry seed contain high levels of GDH activity which decline during germination independently of the presence or absence of a nitrogen source. Cycloheximide, but not chloramphenicol, greatly prevented the decrease of GDH activity.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

9.
Nitrate reductase (NR) activity and nitrite reductase (NiR) mRNA levels were monitored in Black Mexican Sweet maize (Zea mays L.) suspension cultures after the addition of nitrate. Maximal induction occurred with 20 millimolar nitrate and within 2 hours. Both NR and NiR mRNA were transiently induced with levels decreasing after the 2 hours despite the continued presence of nitrate in the medium. Neither ammonia nor chlorate prevented the induction of NR. Furthermore, removal of nitrate, followed by its readdition 22 to 48 hours later, did not result in reinduction of activity or message. NR was synthesized de novo, since cycloheximide completely blocked its induction. Cycloheximide had no effect on the induction of NiR mRNA or on the transient nature of its induction. These results are similar to those reported previously for maize seedlings.  相似文献   

10.
Goud KV  Sharma R 《Plant physiology》1994,106(2):643-650
The tomato (Lycopersicon esculentum Mill.) aurea (au) mutant has been characterized as a phytochrome-deficient mutant lacking spectrally detectable phytochrome A in etiolated seedlings. Seedlings of au grown under red light (RL) lack phytochrome regulation of nuclear genes encoding plastidic proteins, possess ill-developed chloroplasts, and are slow to de-etiolate. In the present study, the effect of phytochrome deficiency on photoinduction of enzymes in etiolated au seedlings was investigated. The photoinduction of the cytosolic enzymes amylase and nitrate reductase (NR) and of the plastidic enzyme nitrite reductase (NiR) in au was compared with that in the isogenic wild-type (WT) tomato and the high-pigment (hp) mutant with exaggerated phytochrome response. In WT and hp, both brief RL pulses and continuous RL induced amylase, NR, and NiR activities, whereas in au no photoinduction of enzymes was observed with brief RL pulses, and continuous RL induced only amylase and NR activities. The time courses of photoinduction of NR and amylase in au under continuous RL followed patterns qualitatively similar to hp and WT. A blue-light pretreatment prior to continuous RL exposure was ineffective in inducing NiR activity in au. Only continuous white light could elicit a photoinduction of NiR in au seedlings. The norflurazon-triggered loss of photoinduction of NiR in WT and hp indicated that NiR photoinduction depended on chloroplast biogenesis. The results indicate that observed photoinduction of NR and amylase in au may be mediated by a residual phytochrome pool.  相似文献   

11.
Deficiencies of each macronutrient (N, P, K, Ca, Mg and Fe)in the culture solution depressed the specific activities ofnitrate reductase (NR) and nitrite reductase (NiR) from riceseedlings. Nitrate and potassium deficiencies especially loweredNR induction, whereas phosphorus deficiency caused the leastdecrease in enzyme induction. On the other hand the activityof NiR was decreased most by deficiencies of nitrate and phosphorus.Potassium deficiency was not as effective in suppressing theinduction of NiR. Sulfur deficiency slightly promoted the inductionof both NR and NiR. Generally, micronutrient deficiencies didnot affect either enzyme. NR induction was slightly decreasedby B, Zn, Cu and Mo deficiencies, and increased by Mn deficiency;whereas NiR activity was slightly increased by B and Cu deficiencies,and was not affected by other micronutrients. Nitrate contentwas decreased by deficiencies of N, P, K, Ca, and micronutrients,and unaffected by Mg, Fe and S deficiencies. Glutamic acid dehydrogenase(GDH) activity was increased by N, Fe and P deficiencies, anddecreased by Mo and Zn deficiencies, and unaffected by othernutrient treatments. (Received August 25, 1976; )  相似文献   

12.
At dissolved oxygen tensions of 15 mmHg (2 kPa) and below, nitrate-limited continuous cultures of Klebsiella K312 synthesized nitrate reductase (NR) and nitrite reductase (NiR) and excreted ammonia. Under anaerobic conditions over 60% of the nitrate-nitrogen utilized was excreted as ammonia. In contrast, carbon-limited cultures excreted nitrite at dissolved oxygen tensions of 15 mmHg or below and synthesized NR but not NiR. Ammonia repressed neither NR nor NiR synthesis. These observations indicate that below a critical oxygen tension of 15 mmHg Klebsiella K312 utilizes oxygen and nitrate as electron acceptors. This oxygen tension correlates well with the critical oxygen tension observed for a change from oxidative to fermentative metabolism in cultures of Klebsiella aerogenes. The product of dissimilatory nitrate reduction is ammonia in nitrate-limited cultures but principally nitrite in carbon-limited (nitrate excess) cultures.  相似文献   

13.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

14.
The level of nitrate reductase (NR) and nitrite reductase (NiR) varied in both shoot and root tissue from nitrate-fed Zea mays L. grown under a 16-hour light/8-hour dark regime over a 10-day period postgermination, with peak activity occurring in days 5 to 6. To study the effect of different light regimes on NR and NiR enzyme activity and mRNA levels, 6-day-old plants were grown in the presence of continuous KNO3 (10 millimolar). Both shoot NRA and mRNA varied considerably, peaking 4 to 8 hours into the light period. Upon transferring plants to continuous light, the amplitude of the peaks increased, and the peaks moved closer together. In continuous darkness, no NR mRNA or NR enzyme activity could be detected by 8 hours and 12 hours, respectively. In either a light/dark or continuous light regime, root NRA and mRNA did not vary substantially. However, when plants were placed in continuous darkness, both declined steadily in the roots, although some remained after 48 hours. Although there was no obvious cycling of NiR enzyme activity in shoot tissue, changes in mRNA mimicked those seen for NR mRNA. The expression of NR and NiR genes is affected by the light regime adopted, but light does not have a direct effect on the expression of these genes.  相似文献   

15.
16.
A tobacco nitrite reductase (NiR) cDNA and its corresponding gene were isolated from cDNA and genomic libraries. An NiR antisense mRNA was expressed in transgenic tobacco under the control of a double 35S promoter. Transformants were obtained on a medium containing ammonium as the sole source of nitrogen. One plant growing normally on ammonium but displaying drastically reduced development and chlorotic leaves when grown on nitrate as the sole source of nitrogen was studied further. This plant accumulated nitrite fivefold over wild-type level and showed reduced amounts of ammonium (11% wild-type level), glutamine (19%), and total protein (8%). NiR mRNA and activity were below detectable levels. Under these conditions, nitrate reductase (NR) activity and mRNA were overexpressed, suggesting that N-metabolites resulting from nitrate reduction are responsible for the repression of the expression of the NR gene, independently from the presence or absence of a functional NR protein.  相似文献   

17.
18.
The activities of nitrate reductase (NR) and nitrite reductase (NiR) and production of indole-3-acetic acid (IAA) by symblotic nitrate tolerant Tn5 mutant AC-10 of Cicer-Rhizobium strain F-75 and mutants BC-35 and BC-46 of strain G36-84 developed earlier, have been studied under ex planta condition. The rhizobiaI mutants and their parental strains were grown with nitrate (0.0, 0.5, 1, 2 or 4 mM), aerobically and microaerobically. The overall activities of NR were 70–91% lower in aerobically grown and 78–87% lower in microaerobically grown mutant cells compared to their parental strains. Similarly, the overall activities of NiR were 36–55% and 27–37% lower in aerobically and microaerobically grown mutant cells, respectively, compared to their parental strains. On the contrary, the overall production of IAA in the culture medium by aerobically grown mutant cells was significantly higher compared to their parental strains. Based on these results, it has been suggested that impaired NR activity and a favourable NiR/NR ratio preventing nitrite accumulation in the rhizobial mutants, may be responsible for imparting nitrate tolerance to chickpea - Rhizobium symbiotic system.  相似文献   

19.
在有PCR和PCO环活性抑制剂甘油醛和光合磷酸化解偶联剂NH4CL存在下,比较了生长于 3种 光环境的乔木黧蒴和灌木九节幼苗阳生和阴生叶片叶绿体的O2和NO2光还原速率。全自然光下两种 植物阳生叶片的叶绿体O2的光还原速率最高,占总光合电子传递活性的66%-68%,NO2光还原速率 也有类似趋势占总电子传递的11%-15%左右。36%和16%自然光下阴生叶片O2和NO2光还原 速率及O2光还原电子传递的比例显著降低,但NO2光还原电子传递的比例不受影响。与NO2光还原 相关的叶片NiR和NR活性及NiR/NR活性比也因叶片接受光强度大小而异,随光强减弱,黧蒴的 NiR活性降低,九节的NR活性增高,但黧蒴的NR活性和九节的NiR活性变化未达差异显著性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号