首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

2.
F Ascencio  A Ljungh  T Wadstr?m 《Microbios》1992,70(283):103-117
The lactoferrin binding properties of Vibrio cholerae, a non-invasive pathogen were investigated. Screening of fifty V. cholerae strains of different serogroups and serotypes, showed that 10% of the V. cholerae strains bound to 125I-labelled lactoferrin, and 40% of the 125I-labelled lactoferrin bound to V. cholerae strain 623 could be displaced by unlabelled lactoferrin. Other iron-binding glycoproteins and ferroproteins like ferritin, transferrin, haemoglobin, and myoglobin inhibited the binding of 125I-lactoferrin to a lesser degree. Monosaccharides (GalNac, Man, Gal, and Fuc), and other glycoproteins such as fetuin and orosomucoid also inhibited the binding to a lesser extent. V. cholerae 623 showed a cell surface associated-proteolytic activity which cleaved off the cell-bound 125I-labelled lactoferrin. The generation of cryptotopes on the V. cholerae cell surface by proteolytic digestion favoured the binding of ferritin, transferrin, haemoglobin, and haemin, as well as Congo red, to cells of V. cholerae 623.  相似文献   

3.
Abstract Bovine lactoferrin binds to a 60 kDa heat shock protein of Helicobacter pylori . Binding ability was related to human immunoglobulin G because bovine lactoferrin binding proteins were isolated by extraction of cell surface associated proteins with distilled water, applied on IgG-Sepharose and nickel sulphate chelate affinity chromatography. Binding was demonstrated by Western blot after purified protein was digested with α-chymotrypsin and incubated with peroxidase-labeled bovine lactoferrin. Binding was inhibited by bovine lactoferrin, lactose, rhamnose, galactose, and two iron-containing proteins, ferritin and haptoglobin. Helicobacter pylori binds ferritin and haptoglobin via charge or hydrophobic interactions because this binding was not inhibited by specific and various glycoproteins or carbohydrates. Carbohydrate moieties of bovine lactoferrin molecules seem to be involved in binding because glycoproteins with similar carbohydrate structures strongly inhibited binding. Scatchard plot analysis of the binding of peroxidase-labeled bovine lactoferrin to H. pylori cells yielded a k d 2.88 × 10−6 M. In addition, binding of H. pylori cells to bovine lactoferrin was enhanced when bacteria treated with pepsin or α-chymotrypsin after isolation from iron-restricted and iron-containing media.  相似文献   

4.
Detection and isolation of a hepatic membrane receptor for ferritin   总被引:3,自引:0,他引:3  
A ferritin receptor has been detected on isolated rat hepatocytes and has been partially purified from rat liver using affinity chromatography. Isolated hepatocytes exhibit approximately 30,000 ferritin binding sites/cell with a binding association constant (Ka) of 1 x 10(8) mol-1 liter. A binding assay has been developed which utilizes a hepatic ferritin receptor coupled to a microparticulate support to facilitate separation of bound and free ligand. This method yielded a Ka of 3 x 10(8) mol-1 liter for the purified hepatic ferritin receptor. Binding of ferritin to the insolubilized receptor was partially inhibited by human lactoferrin but unaffected by 200-fold molar excess of bovine albumin, rat transferrin, or human asialoorosomucoid.  相似文献   

5.
Structure-function relationships for transferrins are discussed in the light of recent X-ray crystal structure determinations. A common folding pattern into two lobes, each comprising two domains is adopted; this allows the tight, but reversible binding of iron. Uptake and release of iron involve substantial domain movements which open and close the binding clefts. The iron binding sites are similar and the key role of the CO3(2-) anion bound with each Fe3+ can now be understood; structural differences near the iron binding sites suggest reasons for the different binding properties of serum transferrin and lactoferrin. The glycan moieties do not appear to affect the protein structure or metal binding properties; they are not clearly seen in the X-ray analyses but have been modelled. The accommodation of different metals and anions is illustrated by the crystal structures of Cu2+ and oxalate-substituted lactoferrins; Al3+ binding is of particular interest. New results on transferrin-receptor interactions with transferrin, and melanotransferrin and an invertebrate transferrin (both of which have defective C-terminal binding sites), emphasize possible functional differences between the two lobes. The availability of site-specific mutants of both transferrin and lactoferrin now offers the opportunity to probe the structural determinants of iron binding, iron release, and receptor binding.  相似文献   

6.
All strains of Streptococcus uberis evaluated bound to lactoferrin (Lf) in milk as detected by polyacrylamide gel electrophoresis and Western blotting. A biotin-avidin-based microplate binding assay and ELISA also revealed that these bacterial strains bound to purified Lf. Binding of bacteria of Lf was not inhibited by mannose and galactose, indicating that glycosidic domains of the Lf molecule were not involved in binding. Lf binding was also unaffected by bovine transferrin. Western blot analysis demonstrated that there were at least two bacterial proteins involved in Lf-binding. Lf binding by S. uberis could enable this bacterium to acquire iron necessary for its growth.  相似文献   

7.
Iron (III) binding proteins are isolated from echidna (Tachyglossus aculeatus multiaculeatus) and platypus (Ornithorhynchus anatinus) milk and blood. On the basis of several criteria it is shown that the milk proteins are not lactoferrins, but are transferrins similar to the corresponding transferrins from the blood. The heterogeneity of the proteins, particularly the echidna milk transferrin, is, at least in part, due to different levels of sialic acid. Their N-terminal sequences (30 residues) are determined and compared with those of other transferrins and lactoferrins. The role of the proteins is discussed.  相似文献   

8.
9.
Specific binding of lactoferrin to Aeromonas hydrophila.   总被引:4,自引:0,他引:4  
The interaction of lactoferrin (Lf) with Aeromonas hydrophila (n = 28) was tested in a 125I-labeled protein-binding assay. The mean per cent binding values for human Lf (HLf) and bovine Lf (BLf) were 13.4 +/- 2.0 (SEM), and 17.5 +/- 2.7 (SEM), respectively. The Lf binding was characterized in type strain A. hydrophila subsp. hydrophila CCUG 14551. The HLf and BLf binding reached a complete saturation within 2 h. Unlabeled HLf and BLf displaced 125I-HLf binding in a dose-dependent manner, and more effectively by the heterologous (1 microgram for 50% inhibition) than the homologous (10 micrograms for 50% inhibition) ligand. Apo- and holo-forms of HLf and BLf both inhibited more than 80%, while mucin caused approx. 50% inhibition of the HLf binding. Various other proteins (including transferrin) or carbohydrates did not block the binding. Two HLf-binding proteins with an estimated molecular masses of 40 kDa and 30 kDa were identified in a boiled-cell-envelope preparation, while the unboiled cell envelope demonstrated a short-ladder pattern at the top of the separating gel and a second band at approx. 60 kDa position. These data establish a specific interaction of Lf and the Lf-binding proteins seem to be porins in A. hydrophila.  相似文献   

10.
During ejaculation, the iron binding protein lactoferrin binds to sperm and forms a major component of sperm-coating antigens. Physicochemical properties of lactoferrin in seminal plasma (SP) and on sperm differ from those of purified lactoferrin. These differences have been attributed to the binding of unknown seminal macromolecules to lactoferrin. We have studied lactoferrin binding molecules in SP. The SP samples were coated onto microtiter plates and tested for binding of biotinylated lactoferrin. SP was found to specifically bind biotinylated lactoferrin. This binding was competitively inhibited by coincubation with unlabeled lactoferrin but was not affected by control incubations done with human IgG or transferrin. Lactoferrin binding molecules in SP were biochemically characterized by using SDS-PAGE and ligand blotting. Biotinylated lactoferrin bound to SP molecules of approximately 120, 60 and 30 kDa. No binding was observed with biotinylated transferrin. The presence of molecules that associate with lactoferrin in SP was further studied by using crossed immunoelectrophoresis. Lactoferrin in SP immunoprecipitated as two peaks, one of which corresponded to purified lactoferrin. These results suggest that some lactoferrin molecules in SP are free and that others are associated with lactoferrin binding molecules. Binding of lactoferrin to lactoferrin binding molecules appears to change its physicochemical properties and thus could influence its biologic activity and its affinity to sperm.  相似文献   

11.
Structure, function and flexibility of human lactoferrin   总被引:2,自引:0,他引:2  
X-ray structure analyses of four different forms of human lactoferrin (diferric, dicupric, an oxalate-substituted dicupric, and apo-lactoferrin), and of bovine diferric lactoferrin, have revealed various ways in which the protein structure adapts to different structural and functional states. Comparison of diferric and dicupric lactoferrins has shown that different metals can, through slight variations in the metal position, have different stereochemistries and anion coordination without any significant change in the protein structure. Substitution of oxalate for carbonate, as seen in the structure of a hybrid dicupric complex with oxalate in one site and carbonate in the other, shows that larger anions can be accommodated by small side-chain movements in the binding site. The multidomain nature of lactoferrin also allows rigid body movements. Comparison of human and bovine lactoferrins, and of these with rabbit serum transferrin, shows that the relative orientations of the two lobes in each molecule can vary; these variations may contribute to differences in their binding properties. The structure of apo-lactoferrin demonstrates the importance of large-scale domain movements for metal binding and release and suggests that in solution an equilibrium exists between open and closed forms, with the open form being the active binding species. These structural forms are shown to be similar to those seen for bacterial periplasmic binding proteins, and lead to a common model for the various steps in the binding process.  相似文献   

12.
Camel lactoferrin is the first protein from the transferrin superfamily that has been found to display the characteristic functions of iron binding and release of lactoferrin as well as transferrin simultaneously. It was remarkable to observe a wide pH demarcation in the release of iron from two lobes. It loses 50 % iron at pH 6.5 and the remaining 50 % iron is released only at pH values between 4.0 and 2.0. Furthermore, proteolytically generated N and C-lobes of camel lactoferrin showed that the C-lobe lost iron at pH 6.5, while the N-lobe lost it only at pH less than 4.0. In order to establish the structural basis of this striking observation, the purified camel apolactoferrin was crystallized. The crystals belong to monoclinic space group C2 with unit cell dimensions a=175.8 A, b=80.9 A, c=56.4 A, beta=92.4 degrees and Z=4. The structure has been determined by the molecular replacement method and refined to an R-factor of 0.198 (R-free=0.268) using all the data in the resolution range of 20.0-2.6 A. The overall structure of camel apolactoferrin folds into two lobes which contain four distinct domains. Both lobes adopt open conformations indicating wide distances between the iron binding residues in the native iron-free form of lactoferrin. The dispositions of various residues of the iron binding pocket of the N-lobe of camel apolactoferrin are similar to those of the N-lobe in human apolactoferrin, while the corresponding residues in the C-lobe show a striking similarity with those in the C-lobes of duck and hen apo-ovotransferrins. These observations indicate that the N-lobe of camel apolactoferrin is structurally very similar to the N-lobe of human apolactoferrin and the structure of the C-lobe of camel apolactoferrin matches closely with those of the hen and duck apo-ovotransferrins. These observations suggest that the iron binding and releasing behaviour of the N-lobe of camel lactoferrin is similar to that of the N-lobe of human lactoferrin, whereas that of the C-lobe resembles those of the C-lobes of duck and hen apo-ovotransferrins. Hence, it correlates with the observation of the N-lobe of camel lactoferrin losing iron at a low pH (4.0-2.0) as in other lactoferrins. On the other hand, the C-lobe of camel lactoferrin loses iron at higher pH (7.0-6.0) like transferrins suggesting its functional similarity to that of transferrins. Thus, camel lactoferrin can be termed as half lactoferrin and half transferrin.  相似文献   

13.
The ability of human milk, as well as its protein fractions, to inhibit the adhesion and invasion of Salmonella typhimurium to HeLa cells was investigated. The results revealed that milk secretory immunoglobulin A (sIgA) inhibited neither the adherence nor the bacterial invasion; however, free secretory component and lactoferrin inhibited the bacterial adhesion and interacted with several bacterial proteins. Our data indicated that glycoproteins such as free secretory component and lactoferrin could act as protective compounds against infant enteric diseases, possibly binding to bacterial surface and blocking adhesion, the primordial step of S. typhimurium infection.  相似文献   

14.
The murine macrophage-like cell line P388D1 has been used as a model to investigate whether iron acquired simultaneously from different sources (transferrin, lactoferrin, and ovotransferrin-anti-ovotransferrin immune complexes) is handled in the same way. P388D1 cells bound both lactoferrin and transferrin, but over a 6 h incubation period only the latter actually donated iron to the cells. When the cells were incubated with [55Fe]transferrin and [59Fe]ovotransferrin-anti-ovotransferrin immune complexes iron was acquired from both sources. However, there was a difference in the intracellular distribution of the two isotopes, proportionally more 55Fe entering haem compounds and less entering ferritin. When the cells were precultured in a low-iron serum-free medium almost no transferrin-iron was incorporated into ferritin, whereas the proportion of immune complex-derived iron incorporated into ferritin was unchanged. Lactoferrin enhanced the rate of cellular proliferation, as measured by [3H]thymidine incorporation, despite its inability to donate iron to the cells, suggesting a stimulatory effect independent of iron donation. In contrast immune complexes inhibited cell proliferation. These findings indicate that iron acquired from transferrin and iron acquired by scavenging mechanisms are handled differently, and suggest that more than one intracellular iron transit pool may exist.  相似文献   

15.
 The effectiveness and mechanism of iron acquisition from transferrin or lactoferrin by Aeromonas hydrophila has been analyzed with regard to the pathogenesis of this microbe. The ability of A. hydrophila's siderophore, amonabactin, to remove iron from transferrin was evaluated with in vitro competition experiments. The kinetics of iron removal from the three molecular forms of ferric transferrin (diferric, N- and C-terminal monoferric) were investigated by separating each form by urea gel electrophoresis. The first direct determination of individual microscopic rates of iron removal from diferric transferrin is a result. A. hydrophila 495A2 was cultured in an iron-starved defined medium and the growth monitored. Addition of transferrin or lactoferrin promoted bacterial growth. Growth promotion was independent of the level of transferrin or lactoferrin iron saturation (between 30 and 100%), even when the protein was sequestered inside dialysis tubing. Siderophore production was also increased when transferrin or lactoferrin was enclosed in a dialysis tube. Cell yield and growth rate were identical in experiments where transferrin was present inside or outside the dialysis tube, indicating that binding of transferrin was not essential and that the siderophore plays a major role in iron uptake from transferrin. The rate of iron removal from diferric transferrin shows a hyperbolic dependence on amonabactin concentration. Surprisingly, amonabactin cannot remove iron from the more weakly binding N-terminal site of monoferric transferrin, while it is able to remove iron from the more strongly binding C-terminal site of monoferric transferrin. Iron from both sites is removed from diferric transferrin and it is the N-terminal site (which does not release iron in the monoferric protein) that releases iron more rapidly! It is apparent that there is a significant interaction of the two lobes of the protein with regard to the chelator access. Taken together, these results support an amonabactin-dependent mechanism for iron removal by A. hydrophila from transferrin and lactoferrin. The implications of these findings for an amonabactin-dependent mechanism for iron removal by A. hydrophila from transferrin and lactoferrin are discussed. Received: 8 August 1999 / Accepted: 22 October 1999  相似文献   

16.
We recently reported that the human transferrin receptor (TfR) contains O-linked GalNAc residues [1]. To investigate whether this modification is shared by transferrin receptors in other mammals, we investigated the glycosylation of TfR in hamster cells. To facilitate our analysis the lectin-resistant Chinese hamster ovary (CHO) cell line Lec8 was used. These cells are unable to galactosylate glycoproteins, resulting in truncation of the Ser/Thr-linked oligosaccharides to a single residue of terminal alpha-linked GalNAc. This structure is bound with high affinity by the lectin Helix pomatia agglutinin (HPA). The TfR was affinity purified from Lec8 cells metabolically radiolabeled with [3H]glucosamine and the receptor was found to bind tightly to HPA-Sepharose. Treatment of the purified TfR with mild alkaline/borohydride released [3H]GalNAcitol, demonstrating the presence of O-linked GalNAc. We also found that many other unidentified [3H]glucosamine-labeled glycoproteins from Lec8 cells were bound by HPA-Sepharose. The bound and unbound glycoproteins were separated by SDS/PAGE and individual species were selected for treatment with mild base/borohydride. Treatment of glycoproteins bound by HPA, but not those unbound, resulted in the release of [3H]GalNAcitol. These studies demonstrate both that the hamster TfR contains O-linked oligosaccharides and that this approach may have general utility for identifying the presence of these oligosaccharides in other glycoproteins.  相似文献   

17.
Ovotransferrin (formerly conalbumin) is an iron-binding protein present in birds. It belongs to the transferrin family and shows about 50% sequence homology with mammalian serum transferrin and lactoferrin. This protein has been demonstrated to be capable of delivering iron to cells and of inhibiting bacterial multiplication. However, no antiviral activity has been reported for ovotransferrin, although the antiviral activity of human and bovine lactoferrins against several viruses, including human herpes simplex viruses, has been well established. In this report, the antiviral activity of ovotransferrin towards chicken embryo fibroblast infection by Marek's disease virus (MDV), an avian herpesvirus, was clearly demonstrated. Ovotransferrin was more effective than human and bovine lactoferrins in inhibiting MDV infection and no correlation between antiviral efficacy and iron saturation was found. The observations reported here are of interest from an evolutionary point of view since it is likely that the defensive properties of transferrins appeared early in evolution. In birds, the defensive properties of ovotransferrin remained joined to iron transport functions; in mammals, iron transport functions became peculiar to serum transferrin, and the defensive properties towards infections were optimised in lactoferrin.  相似文献   

18.
Investigations of metal-substituted human lactoferrins by fluorescence, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy confirm the close similarity between lactoferrin and serum transferrin. As in the case of Fe(III)- and Cu(II)-transferrin, a significant quenching of apolactoferrin's intrinsic fluorescence is caused by the interaction of Fe(III), Cu(II), Cr(III), Mn(III), and Co(III) with specific metal binding sites. Laser excitation of these same metal-lactoferrins produces resonance Raman spectral features at ca. 1605, 1505, 1275, and 1175 cm-1. These bands are characteristic of tyrosinate coordination to the metal ions as has been observed previously for serum transferins and permit the principal absorption band (lambda max between 400 and 465 nm) in each of the metal-lactoferrins to be assigned to charge transfer between the metal ion and tyrosinate ligands. Furthermore, as in serum transferrin the two metal binding sites in lactoferrin can be distinguished by EPR spectroscopy, particularly with the Cr(III)-substituted protein. Only one of the two sites in lactoferrin allows displacement of Cr(III) by Fe(III). Lactoferrin is known to differ from serum transferrin in its enhanced affinity for iron. This is supported by kinetic studies which show that the rate of uptake of Fe(III) from Fe(III)--citrate is 10 times faster for apolactoferrin than for apotransferrin. Furthermore, the more pronounced conformational change which occurs upon metal binding to lactoferrin is corroborated by the production of additional EPR-detectable Cu(II) binding sites in Mn(III)-lactoferrin. The lower pH required for iron removal from lactoferrin causes some permanent change in the protein as judged by altered rates of Fe(III) uptake and altered EPR spectra in the presence of Cu(II). Thus, the common method of producing apolactoferrin by extensive dialysis against citric acid (pH 2) appears to have an adverse effect on the protein.  相似文献   

19.
Human lactoferrins isolated from neutrophilic leucocytes and milk by CM-Sephadex chromatography were similar in Mr (76000) and pI (8.7). Upon acidification, both proteins released their two Fe3+ ions/molecule in a similar biphasic way. Both proteins intravenously injected into mice were cleared from plasma at the same rate. The maximal uptakes by the liver, which occurred 5 min after injection, were inhibited to the same extent by milk lactoferrin used as a competitor.  相似文献   

20.
Unmethylated CpG dinucleotide motifs in bacterial DNA, as well as oligodeoxynucleotides (ODN) containing these motifs, are potent stimuli for many host immunological responses. These CpG motifs may enhance host responses to bacterial infection and are being examined as immune activators for therapeutic applications in cancer, allergy/asthma, and infectious diseases. However, little attention has been given to processes that down-modulate this response. The iron-binding protein lactoferrin is present at mucosal surfaces and at sites of infection. Since lactoferrin is known to bind DNA, we tested the hypothesis that lactoferrin will bind CpG-containing ODN and modulate their biological activity. Physiological concentrations of lactoferrin (regardless of iron content) rapidly bound CpG ODN. The related iron-binding protein transferrin lacked this capacity. ODN binding by lactoferrin did not require the presence of CpG motifs and was calcium independent. The process was inhibited by high salt, and the highly cationic N-terminal sequence of lactoferrin (lactoferricin B) was equivalent to lactoferrin in its ODN-binding ability, suggesting that ODN binding by lactoferrin occurs via charge-charge interaction. Heparin and bacterial LPS, known to bind to the lactoferricin component of lactoferrin, also inhibited ODN binding. Lactoferrin and lactoferricin B, but not transferrin, inhibited CpG ODN stimulation of CD86 expression in the human Ramos B cell line and decreased cellular uptake of ODN, a process required for CpG bioactivity. Lactoferrin binding of CpG-containing ODN may serve to modulate and terminate host response to these potent immunostimulatory molecules at mucosal surfaces and sites of bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号