首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Studies on the reproduction, longevity and life table parameters of Iphiseius degenerans (Berlese) were carried out under laboratory conditions of 25 ± 1 °C, 75 ± 5% RH and 16L:8D h. As food sources for the predatory mite, Ricinus communis L. pollen, all stages of the spider mite Tetranychus urticae Koch, Frankliniella occidentalis (Pergande) larvae, and Ephestia kuehniella Zeller eggs were selected. All diets were accepted as food by the adult mites. Female longevity ranged from 29.5 to 42.4 days, the highest value was recorded on a diet of Ephestia eggs. The highest percentage of females escaping the experimental arena was observed on the diet consisting of thrips larvae. The highest oviposition rate (1.9 eggs/female.day) was recorded when the predator was fed on spider mites on an artificial substrate. For other diets, oviposition rates ranged from 1.0 to 1.3 eggs/female.day. The intrinsic rate of natural increase (r m) of I. degenerans varied between 0.015 and 0.142 females/female.day. The diet consisting of castor bean pollen resulted in the highest population growth whereas the diet on spider mites brushed off onto a bean leaf arena resulted in the slowest population growth. This can be explained by the inability of the predator to cope with the webbing of T. urticae, and the high escape rate of the progeny when reared on spider mites. The percentage of females in the offspring ranged from 40 to 73%.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

2.
In spring and summer, two groups of natural enemies are successfully used for biological control of western flower thrips,Frankliniella occidentalis (Pergande) in greenhouses: phytoseiid mites (Amblyseius cucumeris (Oudemans) and, to a lesser extent,A. barkeri (Hughes)) and anthocorid bugs (Orius spp.). During winter, however, these predators often fail to control the pest. One likely cause for failure is the predators' tendency to enter diapause under short day conditions. In addition, eggs of predatory mites are generally susceptible to low humidity conditions, which often arise in greenhouses when outside temperatures drop below zero, or at bright, hot days in summer. In search for a thrips predator that is not hampered by these conditions, five subtropical phytoseiid species were selected which were known to feed on thrips:A. hibisci (Chant),A. degenerans Berlese,A. limonicus s.s. Garman and McGregor,A. scutalis (Athias-Henriot) andA. tularensis (Congdon). These species were compared toA. cucumeris andA. barkeri, with respect to the following features: (1) predation and oviposition rate with youngF. occidentalis larvae as prey, (2) oviposition rate on a diet of sweet pepper pollen, (3) drought tolerance spectrum of eggs, and (4) incidence of reproductive diapause under short day conditions. The results showed thatA. limonicus exhibited the highest predation and oviposition rates on a diet of thrips larvae. Moreover,A. limonicus females showed total absence of diapause under the conditions tested. A major disadvantage of this species was, however, that its eggs were most sensitive to low air humidity conditions. Least sensitive to low air humidity were eggs ofA. degenerans andA. hibisci. Females ofA. degenerans andA. hibisci also showed total absence of diapause, and intermediate rates of predation and oviposition, on both thrips larvae and pollen. In conclusion, we argue thatA. degenerans andA. hibisci are the most promising candidates for biological control ofF. occidentalis under conditions of low humidity and short day length. The success of these candidates remains to be shown in greenhouse experiments.  相似文献   

3.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

4.
Contact activities of flucycloxuron on immature stages of the two-spotted spider mite (Tetranychus urticae (Koch)) and the European red mite (Panonychus ulmi (Koch)) gradually decrease in the successive developmental stages. The levels of contact activity of flucycloxuron on larvae and protonymphs ofT. urticae andP. ulmi are of the same order. Deutonymphs ofT. urticae are less susceptible to contact activity than the similar stage ofP. ulmi. In adultT. urticae, the transovarial ovicidal activity was used as an indicator for cuticular penetration. More than 90% of the maximal penetration into adult mites occurs within 8 h. Reversibility of the transovarial activity was not observed after 24 h, but did occur after a subsequent 48 h stay on untreated leaves. The ovo-larvicidal activity of flucycloxuron onP. ulmi after treatment of apple leaves is strongly negatively influenced by leaf age, partly by lower retention of the spray liquid on the leaves. Leaf penetration was measured by application of flucycloxuron on leaf uppersides and assessment of the transovarial activity in mites (P. ulmi orT. urticae) infested on the undersides, one day after treatment. In this test system, leaf penetration was found to be strongly species dependent. Penetration was high in cucumber, moderate in French beans, cotton, roses and strawberry, but low in apple and pepper. Leaf penetration in French bean plants is drastically reduced at increasing leaf age. The overall positive effect of increase in relative air humidity on leaf penetration, is statistically highly significant (P=0.001) for French beans and almost significant (P=0.08) for cucumbers. WithT. urticae on French bean it was found that in this test flucycloxuron needs more than one day for maximal leaf penetration. Although in apple leaves penetration from uppersides was low, penetration from undersides was much higher. The surfactants Arkopal N 130, Silwet L-77 and X2-5309 enhance penetration from leaf under-sides.  相似文献   

5.
Choh Y  Takabayashi J 《Oecologia》2007,151(2):262-267
We studied whether volatiles released by putative host plants affect the antipredator response of an herbivorous mite, Tetranychus urticae, when the patch was invaded by Phytoseiulus persimilis. Tetranychus urticae laid a lower number of eggs on tomato leaves than on lima bean leaves, suggesting that lima bean is a preferred host food source for T. urticae. In addition, T. urticae preferred lima bean plant volatiles to tomato plant volatiles in a Y-tube olfactometer test. To investigate the antipredator response of T. urticae, we examined the migration of T. urticae from a lima bean leaf disc to a neighbouring leaf disc (either a tomato or lima bean leaf disc) when ten predators were introduced into the original lima bean disc. A Parafilm bridge allowed for migration between the leaf discs. No migrations occurred between leaf discs when there were no predators introduced to the original leaf disc. However, when predators were introduced migrations did occur. When the neighbouring leaf disc was upwind of the original disc, the migration rate of the mite from original lima bean leaf disc to a neighbouring tomato leaf disc was significantly lower than that to a neighbouring lima bean leaf disc. By contrast, when the neighbouring leaf disc was downwind of the original leaf disc, there was no difference in the migration rates between lima bean leaf discs and tomato leaf discs. The number of T. urticae killed by P. persimilis for each treatment was not different, and this clearly shows that the danger was the same in all treatments regardless of the decision made by T. urticae. From these results, we conclude that T. urticae change their antipredator response by evaluating the difference in host plant volatiles in the patch they inhabit.  相似文献   

6.
Improved laboratory methods are described in detail for mass rearing of various thrips species, such as Frankliniella occidentalis, Frankliniella intonsa, Thrips palmi, Thrips tabaci (Thysanoptera: Thripidae) and a thrips parasitoid, Ceranisus menes (Hymenoptera: Eulophidae), using various foods. In one method, plant pollen and honey solution are used as food sources. In a second method, germinated broad bean seeds are used. Eggs, produced in large numbers in water, are collected by a suction funnel onto a filter paper and incubated in a Petri dish. Large numbers of larvae that hatch are collected by using food traps (plant pollen). Larvae can be reared on pollen or on germinated broad bean seeds until adult emergence without additional water and food. This method has been found useful for producing even-aged thrips at different densities (up to 500 larvae in a cage of 80 mm diameter) with relatively low mortality rates. Evaluation of this rearing method for F. intonsa, shows that during 2 weeks at 20 °C per 100 females more than 4000 females could be produced in the next generation. About 5 min per day is required to achieve this productivity of mass production. The method is also suitable for producing large numbers of the solitary endoparasitoid of thrips larvae, C. menes.  相似文献   

7.
The predatory bug Macrolophus caliginosus, which is widely used in greenhouse crops, is limited in its application by its high price. An important factor in the cost is the high price of Ephestia kuehniella eggs, the prey used in their mass rearing. In order to reduce their price, alternatives to moth eggs are currently being investigated. The brine shrimp Artemia sp. is produced in large quantities in saline lakes and is fed as live food source to the larvae of a variety of marine and freshwater organisms. In this study, we tested Artemia sp. as prey for rearing M. caliginosus from two strains. We evaluated developmental and reproduction parameters of the predator when fed nauplii, enriched nauplii with a fatty acid, dry cysts and hydrated cysts, and were compared with those obtained when the predator was fed with E. kuehniella eggs. Nauplii had a significant reduction in survivorship, a delay in development of nymphs and a low reproduction of adults. Nauplii enriched with docosahexaenoic acid (DHA, 22:6n − 3), a common practice for larviculture of some marine fish species, resulted toxic to M. caliginosus nymphs and survival was quite low. On the contrary, either dry or hydrated cysts from the two strains tested of the brine shrimp produced the same nymphal survivorship, nymphal development time and weight and fecundity of adults as those obtained with E. kuehniella eggs. Demographic parameters of the eighth generation of the predator reared with cysts of the two strains, either dry or hydrated, were as good as those of moth eggs. We concluded that Artemia sp. cysts were a good substitution prey for the mass rearing of M. caliginosus.  相似文献   

8.
Biological control of different species of pest with various species of generalist predators can potentially disrupt the control of pests through predator-predator interactions. We evaluate the impact of three species of generalist predatory mites on the biological control of green peach aphids, Myzus persicae (Sulzer) with the aphidophagous gall midge Aphidoletes aphidimyza (Rondani). The predatory mites tested were Neoseiulus cucumeris (Oudemans), Iphiseius degenerans (Berlese) and Amblyseius swirskii Athias–Henriot, which are all commonly used for pest control in greenhouse sweet pepper. All three species of predatory mites were found to feed on eggs of A. aphidimyza, even in the presence of abundant sweet pepper pollen, an alternative food source for the predatory mites. In a greenhouse experiment on sweet pepper, all three predators significantly reduced population densities of A. aphidimyza, but aphid densities only increased significantly in the presence of A. swirskii when compared to the treatment with A. aphidimyza only. This stronger effect of A. swirskii can be explained by the higher population densities that this predator reached on sweet pepper plants compared to the other two predator species. An additional experiment showed that female predatory midges do not avoid oviposition sites with the predator A. swirskii. On the contrary, they even deposited more eggs on plants with predatory mites than on plants without. Hence, this study shows that disruption of aphid control by predatory mites is a realistic scenario in sweet pepper, and needs to be considered when optimizing biological control strategies.  相似文献   

9.
Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the predator. Thrips and predatory mites - apartfrom feeding on each other - can also feed and reproduce on a diet of pollen.Because thrips may aggregate at pollen patches, such patches may be risky foroviposition by the predatory mites. We found that, in absence of thrips,predatory mites lay their eggs close to pollen, but further away when thripsarepresent. Predatory mite eggs near pollen were killed more frequently by thripsthan when they were deposited further away. The oviposition behaviour of thepredatory mite was also studied in absence of thrips, but in presence of thealarm pheromone of thrips. This pheromone is normally secreted upon contactwithpredators or competitors. When applied close to the pollen, predatory mitesoviposited significantly further away from it. When the alarm pheromone wasapplied away from the food source, most eggs were found near the pollen. Theseresults indicate that female predatory mites show flexible ovipositionbehaviourin response to the presence of their counterattacking prey.  相似文献   

10.
The beneficial effect of food supplements in supporting populations of generalist arthropod predators in agricultural systems has been shown to enhance pest control. When providing additional foods in a crop that is attacked by an omnivorous pest, food supplements may be available to both pest and predator populations resulting in more complex interactions. We assessed the consequences of adding extra food sources to a tritrophic system in the laboratory, consisting of leaf discs of kidney bean plants (Phaseolus vulgaris), western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) and the predatory mite Amblydromalus limonicus (Acari: Phytoseiidae). The supplemental food sources tested were cattail pollen, Typha latifolia, dry decapsulated cysts of the brine shrimp, Artemia franciscana (Branchiopoda: Artemiidae) and eggs of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Larvae of F. occidentalis were observed to feed on all three food sources when applied to bean leaves. The immature development time of F. occidentalis was significantly shorter when T. latifolia pollen was provided compared to bean leaves only and bean leaves supplemented with A. franciscana or E. kuehniella. The predation rate of A. limonicus females on first instars of F. occidentalis decreased with about 30% irrespective of food type supplemented to the leaf discs. The presence of additional foods reduced antipredator behavior of F. occidentalis larvae killing predator eggs. Thrips larvae did not attack eggs of A. limonicus when cattail pollen was added to the leaf discs, whereas 2.5 predator eggs per day were consumed without food supplementation. Leaf damage decreased substantially when Typha pollen was present on the leaf discs. The findings of this study indicate that food supplementation shifts tritrophic interactions both top-down and bottom-up and may affect the outcome of an augmentative biological control program.  相似文献   

11.
The daily rate of oviposition, fecundity, survival and adult longevity ofOrius albidipennis (Reuter) (Hemiptera: Anthocoridae) were studied in the laboratory in Israel. These parameters were compared on three arthropod prey species: the two-spotted spider mite,Tetranychus urticae Koch; the onion thrips,Thrips tabaci Lindeman; and eggs of the almond moth,Ephestia cautella Walker. The fecundity and survival on the thrips diet (217.2 eggs/female and 98.7%, respectively) and on moth eggs (184.1 eggs/female and 84.6%, respectively) were significantly higher than on the spider mite diet (110.9 eggs/female and 40.4%, respectively). Female longevity was significantly higher onEphestia eggs (63.0 days) than on thrips (45.1 days) and mites (35.1 days). There were no significant differences in male longevity among the three diets (57.5, 64.1 and 54.5 days, respectively).  相似文献   

12.
J. Bonde 《BioControl》1989,34(2):275-287
Amblyseius barkeri (Hughes) fed onThrips tabaci (Lind.) at 25°C showed an average duration of 2.2, 0.8 and 3.2 days for the egg, larval and nymphal stages, with mortalities at 1.0, 1.0 and 3.1%, respectively. Females represented 63% of the population and required multiple matings for optimal fertility. The oviposition period was 20.3 days and the average oviposition rate 2.3 eggs per day. The intrinsic rate of increase was 0.22 per day. The expected life span was 29.6 days for ♀♀ and 27.4 days for ♂♂.A. barkeri ♂♂ and ♀♀ both consumed 3.3 nymphs of thrips per day (mean value for the feeding stages). The larva does not take up food. In the absence of thripsA. barkeri was able to consume two-spotted spider mites,Tetranychus urticae (Koch), and their eggs, adult broad mites,Polyphagotarsonemus latus (Banks), and pollen of various plants. Cannibalism was observed when food was lacking. Certain morphological features, egglaying, mating and predatory behaviour are described.   相似文献   

13.
The eriophyoid mite Aceria guerreronis Keifer (Eriophyidae), commonly called the coconut mite, is a key pest of coconut fruits. Surveys conducted on coconut palms in Brazil revealed the predatory mites Neoseiulus paspalivorus DeLeon (Phytoseiidae) and Proctolaelaps bickleyi Bram (Ascidae) as the most commonly associated natural enemies of A. guerreronis on coconut fruits. However, virtually nothing is known about the life history of these two predators. We conducted laboratory experiments at 25 ± 0.1°C, 70–90% RH and 12:12 h L:D photoperiod to determine the life history characteristics of the two predatory mites when feeding on A. guerreronis and other potential food sources present on coconut fruits such as Steneotarsonemus furcatus DeLeon (Tarsonemidae), coconut pollen and the fungus Rhizopus cf. stolonifer Lind (Mucoraceae). In addition, the two-spotted spider mite Tetranychus urticae Koch (Tetranychidae) was tested for its suitability as prey. Both predators, N. paspalivorus and P. bickleyi, thrived on A. guerreronis as primary food source resulting in shorter developmental time (5.6 and 4.4 days, respectively), higher oviposition rate (1.7 and 7.0 eggs/female/day, respectively) and higher intrinsic rate of increase (0.232 and 0.489 per female/day, respectively) than on any other diet but were unable to develop or lay eggs when fed T. urticae. Coconut pollen and S. furcatus were adequate alternative food sources for N. paspalivorus and Rhizopus for P. bickleyi. We discuss the relevance of our findings for natural and biological control of the coconut mite A. guerreronis.  相似文献   

14.
Interspecific predation and cannibalism are common types of interaction in phytoseiid predator guilds, but the extent and nature of these interactions have not been determined yet in phytoseiid guilds composed of African native and neotropical exotic phytoseiid predators found in cassava habitat in southern Africa. We determined in laboratory experiments the level of cannibalism and interspecific predation among the three phytoseiid mite species Euseius fustis, Iphiseius degenerans, and Typhlodromalus aripo in the absence of food and in the presence of limited or abundant quantities of two food types – Mononychellus tanajoa and maize pollen – commonly found on cassava in Africa. When confined without food, only two T. aripo females laid each two eggs within 5 days, and this species survived longer than I. degenerans and E. fustis. In the presence of con- or hetero-specific larvae or protonymphs, the three species fed more on the former than on the latter, and more on hetero-specifics than on con-specifics. Oviposition rates of the three species did not exceed 0.7 egg/female/day on con- and hetero-specific immatures. Typhlodromalus aripo and E. fustis survived longer on con-specific and hetero-specific larvae and on hetero-specific protonymphs than in the absence of any food, while T. aripo survived longer than the two other species on the same diets. Provision of limited quantity of food decreased interspecific predation rate by I. degenerans and T. aripo, but not by E. fustis, and increased oviposition rate and longevity of all three species. Provision of abundant food, however, eliminated cannibalism by all three species and further reduced interspecific predation rates, but their oviposition and longevity remained relatively unchanged compared with limited food provision. Potential consequences of cannibalism and interspecific predation among phytoseiid mites on cassava for the biological control of M. tanajoa are discussed.  相似文献   

15.
Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysanoptera: Thripidae) are major pests of sweet pepper for direct damage and tospovirus transmission. To control their infestations, Orius laevigatus (Fieber) (Heteroptera: Anthocoridae) is produced by many commercial insectaries and widely used on IPM vegetable crops of Europe. This predator is naturally widespread along the Mediterranean and Atlantic coasts, and not in more continental areas, where other Orius spp. are more common. Research was conducted in a continental area of Northwest Italy in 2002–2003 to assess the natural presence of anthocorids on pepper, and to compare their colonization and predatory ability with those of the species artificially introduced. Experiments were conducted in 12 sweet pepper greenhouses, in six of which O. laevigatus release was made. From late May to early October, thrips and anthocorids were sampled on pepper by collecting flowers; Orius spp. were also collected on neighboring wild flora. Independently of the releases, Orius specimens were found in all surveyed greenhouses, but O. niger Wolff, also captured on various wild plants, was the most abundant species. It naturally colonized crops from late June and proved to be the most efficient predator on sweet pepper in the surveyed area, if not disturbed by pesticide application. Contrarily, O. laevigatus was rarely found and only in the greenhouses in which it had been released. However its introduction resulted in thrips control before natural colonization by the native species occurred.  相似文献   

16.
Various foods associated with cassava were tested for their effect on the development, fecundity and longevity of Euseius fustis, the most common phytoseiid species found on cassava in Africa. Euseius fustis developed successfully to adulthood on the spider mite prey species Mononychellus tanajoa (Bondar) and Oligonychus gossypii (Zacher) and on pollen from maize, castor bean and cassava. Euseius fustis also completed development on water-diluted phloem exudate from cassava, diluted honeydew from the cassava mealybug and on various pollen and prey combinations. When reared on Tetranychus urticae Koch prey or free water only, E. fustis did not develop past the deutonymphal stage. All larvae held on clean leaf discs on water-soaked cotton died without moulting, suggesting that E. fustis must feed in order to moult to the nymphal stages. Diets of maize plus castor bean pollen and maize pollen plus M. tanajoa resulted in the highest rate of development, the highest fecundity and the greatest longevity. Castor bean pollen alone and maize pollen alone produced a higher fecundity and greater longevity than M. tanajoa tested alone. A colony of E. fustis reared continuously for seven generations on castor bean pollen produced nine times more adult females than a colony of E. fustis reared continuously on M. tanajoa. No negative effects on the development and fecundity of E. fustis were observed after seven generations were reared on pollen.  相似文献   

17.
D. S. Yao  D. A. Chant 《Oecologia》1989,80(4):443-455
Summary Populations of two species of phytoseiid mite predators, Phytoseiulus persimilis Athias-Henriot and Amblyseius degenerans (Berlese), feeding on a tetranychid prey, Tetranychus pacificus McGregor, were allowed to grow separately as well as together on bush lima bean (Phaseolus lunatus Var.) arenas in the laboratory. The population plateau attained by P. persimilis was nearly 5 times higher than that for A. degenerans when each species was on separate leaf arenas. When they were on the same arena, P. persimilis was outcompeted by A. degenerans after about 70 days of population growth. When dispersal to other arenas was necessary for the predators to find prey in another experiment, P. persimilis survived well but not A. degenerans. The mechanisms underlying species displacement were explored further. The differential mortality of immature predators at different developmental stages due to interspecific predation was concluded to be responsible for the population decline of P. persimilis, and the decline of A. degenerans in another experiment was attributed to its sedentary tendency regardless of prey distribution and to the lack of alternative food sources in the system. The implications to biological control of mutual predation between predator species is discussed briefly.  相似文献   

18.
According to the present practice of Hungarian greenhouse sweet pepper production, only exotic agents are used for biological control purposes against thrips pests. The suitability for biological control of the second instars of an indigenous species, the common crab spider, Xysticus kochi Thorell (Araneae: Thomisidae) was tested on thrips species, Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) using a cage set-up on greenhouse sweet pepper plants. Effects of introducing second instars of X. kochi on thrips infested plants were judged by assessing the degree of aesthetical damage, the commercial value of the fruits (degree of economic loss) and the quality composition of the harvested peppers. The estimated damaged surface unit was significantly lower in control plants than in plants infested by F. occidentalis. A significant effect of the spider introduction was observed in all of the pepper quality indicators applied. We suspect that direct Xysticus predation or any other predator-induced effect resulted in reduced levels of damage on harvested peppers. However, further investigation is needed to detect the origin (e.g., predation and non-predation effects) of the suppression of thrips damage. Our results suggest that X. kochi could be an effective component of greenhouse antagonistic fauna and the application of mulch may encourage the effectiveness of spiderlings. An erratum to this article can be found at  相似文献   

19.
Components of search effort were determined for adult females of Orius tristicolor (White) (Hemiptera: Anthocoridae) on bean, Phaseolus vulgaris L., leaves with either western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) or twospotted spider mites, Tetranychus urticae (Koch) (Acari: Tetranychidae) as prey. In the absence of prey, females of O. tristicolor allocated significantly more search time to leaves damaged by western flower thrips than to leaves damaged by twospotted spider mites, artificially damaged leaves or undamaged leaves. In the presence of prey, search time increased with increasing amounts of leaf damage for both prey species, but was not affected by prey species. Amounts of leaf damage or type of prey did not affect giving-up-time. The proportion of predators that successfully located thrips increased with increasing amounts of thrips damage on leaves. Females of O. tristicolor appeared to follow some simple, behavioural rules-of-thumb for allocation of search effort. The presence and type of damage determined the initial effort allocated to searching a leaf. Subsequent effort was determined by successful capture of prey, regardless of species. The implications of these results for application of Orius spp. for biological control are discussed.  相似文献   

20.
Stratiolaelaps ( = Hypoaspis) miles (Berlese) (Acari: Mesostigmata: Laelapidae) is a polyphagous soil-dwelling predatory mite that is widely marketed for use in greenhouse production systems to manage populations of dark-winged fungus gnats, Bradysia spp. (Diptera: Sciaridae) and for supplemental control of thrips. The suggestion by Walter and Campbell (2003, Biol. Control 26: 253–269) that North American commercial cultures of S. miles may actually be S. scimitus was confirmed. The development and reproduction at 21–23 °C of S. scimitus provided ad libidum with one of three different prey – the fungus gnat Bradysia aff. coprophila (Lintner), potworms (Enchytraeidae), or Sancassania aff. sphaerogaster (Zachvatkin, 1937) (Acari: Astigmata: Acaridae) – were compared. Developmental duration of the egg and non-feeding larval stages were 2.47 and 1.11 days, respectively; mortalities were 8.3 and 5.5%. Stratiolaelaps scimitus failed to develop beyond the protonymphal stage when provided with S. aff. sphaerogaster alone, although some feeding was observed. Development and reproduction of S. scimitus was successful on both fungus gnat larvae and enchytraeids, with no influence of prey on protonymphal duration (4.70 days) and mortality (8.3%), or on deutonymphal duration (4.61 days) and mortality (6.1%). Adult female S. scimitus feeding on potworms, compared to those feeding on fungus gnat larvae, had a significantly shorter pre-oviposition period (2.69 vs. 4.59 days). However, diet did not influence other adult female developmental or reproductive characteristics (oviposition period, 18.6 days; post-oviposition period, 6.2 days; total adult longevity, 27.3 days; total number of eggs, 26.5). S. scimitus reared on potworms tended (p = 0.06) to have a higher intrinsic rate of increase, a higher finite rate of increase and a shorter doubling time (r m = 0.142 day−1, λ = 1.153, Dt = 4.85 days) than those reared on fungus gnat larvae (r m = 0.105 day−1, λ = 1.110, Dt = 6.58 days), but differences in net reproductive rate (R 0) and generation time (G) were not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号