首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

2.
3.
Erythrocyte band 4.1 is an important protein in the control and maintenance of the cytoskeleton. Skate erythrocyte band 3, the anion exchanger, appears to play a pivotal role in the regulation of volume-stimulated solute efflux during volume expansion. Because band 4.1 interacts with band 3, we tested whether their interaction might change during volume expansion. Skate red blood cells were volume-expanded in either hypotonic media (one-half osmolarity) or were swollen under isoosmotic conditions by inclusion of ethylene glycol or ammonium chloride in the medium. Microsomal membranes isolated from red cells under volume expanded conditions demonstrated a significant decrease in the amount of band 4.1 bound to band 3. In unstimulated cells, approximately one third of the binding of band 4.1 occurred to band 3. This binding was characterized as being sensitive to competition by the peptide IRRRY. The majority of band 4.1 is bound to glycophorin (as demonstrated in other species), and this binding does not change during volume expansion. The alteration in band 4.1:band 3 interaction occurs within 5 min after volume expansion and is transient, returning to near normal interaction within 60 min. Two drugs that promote band 3 oligomerization, pyridoxal-5'-phosphate and DIDS, also decreased band 4.1 interaction with band 3. Band 4.1 and ankyrin binding to band 3 may be reciprocally related as high-affinity ankyrin binding sites to band 3 observed under volume-expanded conditions are decreased by inclusion of band 4.1 in the binding reactions. J. Exp. Zool. 289:177-183, 2001.  相似文献   

4.
The role of band 4.1 in the association of actin with erythrocyte membranes   总被引:8,自引:0,他引:8  
Spectrin stimulates the association of F-actin with erythrocyte inside-out vesicles. Although inside-out vesicles are nearly devoid of two of the three major cytoskeletal proteins, spectrin and actin, they retain nearly all of the cytoskeletal protein designated band 4.1. Inside-out vesicles which have been substantially depleted of band 4.1 by extraction in 1 M KCl, 0.4 M urea and then reconstituted with spectrin show a markedly diminished ability to bind actin by comparison with vesicles containing normal amounts of band 4.1. This diminution is not due to an impaired ability of the vesicles to bind spectrin. Addition of purified band 4.1 to vesicles either before or after they have been reconstituted with spectrin restores their actin binding capacity to near normal levels as does addition of a spectrin-band 4.1 complex prepared by sucrose gradient centrifugation. Band 4.1 bound to vesicles in the absence of added spectrin has no effect on actin binding. Our results suggest that a spectrin band 4.1 complex is responsible for binding actin to erythrocyte membranes.  相似文献   

5.
We have studied the effects of band 4.1 phosphorylation on its association with red cell inside-out vesicles stripped of all peripheral proteins. Band 4.1 bound to these vesicles in a saturable manner, and binding was characterized by a linear Scatchard plot with an apparent Kd of 1-2 x 10(-7) M. Phosphorylation of band 4.1 by purified protein kinase C reduced its ability to bind to membranes, resulting in a reduction in the apparent binding capacity of the membrane by 60-70% but little or no change in the apparent Kd of binding. By contrast, phosphorylation of band 4.1 by cAMP-dependent kinase had no effect on membrane binding. Digestion of the stripped inside-out vesicles with trypsin cleaved 100% of the cytoplasmic domain of band 3 but had little or no effect on glycophorin. Binding of band 4.1 to these digested vesicles was reduced by 70%. Phosphorylation of band 4.1 by protein kinase C had no effect on its binding to the digested vesicles, suggesting that the cytoplasmic domain of band 3 contained the phosphorylation-sensitive binding sites. This was confirmed by direct measurement of band 4.1 binding to the purified cytoplasmic domain of band 3. Phosphorylation of band 4.1 by protein kinase C reduced its binding to the purified 43-kDa domain by as much as 90%, while phosphorylation by cAMP-dependent kinase was without effect. These results show a selective effect of protein kinase C phosphorylation on the binding of band 4.1 to one of its membrane receptors, band 3, and suggest a mechanism whereby one of the key red cell-skeletal membrane associations may be modulated.  相似文献   

6.
Extraction of spectrin-depleted erythrocyte membranes with the non-ionic detergent Tween 20, in a 0.1 M glycine-NaOH buffer (pH 9.8) leads to the solubilization of band 4.1 and the sialoglycoproteins. The comigration of band 4.1 with the sialoglycoproteins in gel filtration and detergent-free electrophoresis indicated that these proteins may be associated as complexes of high molecular weight. Although treatment of intact membranes with Tween 20 under the same conditions does not lead to direct solubilization of proteins, severe disruption of the membranes was observed under phase contrast microscopy. Suspension of the treated membranes in 5 mM phosphate buffer (pH 8.0) leads to the solubilization of band 4.1, spectrin, actin and the sialoglycoproteins. High molecular weight complexes of band 4.1 and the sialoglycoproteins were isolated from these extracts, suggesting a possible interaction between band 4.1 and sialoglycoproteins which may be important for linking the cytoskeleton to the membrane.  相似文献   

7.
Protein 4.1 is a multifunctional structural protein occupying a strategic position in the erythrocyte membrane. It is present in the erythrocyte membrane skeleton and in many nonerythroid cells. This report describes a novel method for purifying this protein based on its selective interaction with inositol hexaphosphate dimagnesium tetrapotassium salt. This interaction was discovered in the course of chromatography of high-salt extract of inside-out membrane vesicles on Procion orange MX-2R-Sepharose. The new procedure is simple and selective and produces protein 4.1 with better yield than that obtained with a previously published procedure. The purified protein 4.1 has the same immunoreactivity and the same alpha-chymotryptic digest profile as protein 4.1 purified by published methods and is fully functional in enhancing the interaction between F-actin and spectrin dimers.  相似文献   

8.
Interactions of band 4.1 with mixed phospholipid membranes [phosphatidylserine (PtdSer), phosphatidylethanolamine, phosphatidylcholine, etc.] and erythrocyte inside-out vesicles were studied. Band 4.1 showed a higher affinity to PtdSer-containing membranes. The amount of binding to PtdSer-containing liposomes was larger than that to PtdSer-lacking liposomes. The amount of binding to inside-out vesicles did not change significantly on a protease treatment of the vesicles. The amount of band 4.1 bound on inside-out vesicles decreased on PtdSer-decarboxylase treatment of the vesicles. Ca2+ acted inhibitory to the binding of band 4.1. Band 4.1 together with PtdSer-containing vesicles but not with PtdSer-lacking vesicles induced gelation of spectrin-actin copolymer solution. Ca2+ inhibited the gelation. Fluorescence energy transfer from PtdSer-containing vesicles to band 4.1 was larger than that from PtdSer-lacking vesicles. Band 4.1 caused a marked release of tempocholine from preloaded PtdSer-containing liposomes but not from PtdSer-lacking liposomes. The release was larger from liposomes containing more PtdSer. Ca2+ was inhibitory to the tempocholine release. We suggest from these results that band 4.1 provides another anchoring site for the cytoskeletal spectrin-actin network to PtdSer domains in the inner layer of erythrocyte membrane. This anchoring may be involved in functional regulation since the interaction causes the membrane permeability change that is dependent on Ca2+.  相似文献   

9.
The bovine aortic endothelial cell (BAEC) cytoskeleton is a complex structure modulated by many stimuli including release from contact inhibition and various components of the extracellular matrix (ECM). Transduction of information from the ECM to the cell nucleus proceeds via several complex pathways including the cytoskeleton. We have demonstrated the presence of an immunoreactive isoform of the human erythrocyte cytoskeletal protein band 4.1 (4.1) in BAEC. BAEC 4.1 is similar in molecular weight to the erythroid protein by immunoblot analyses and produces a similar pattern of cysteine specific cleavage products consistent with a cluster of cysteine residues previously described in the erythroid molecule. We have also examined the effects of defined ECM proteins on the distributions of cultured BAEC 4.1 and actin filaments (AF) at confluency and following release from contact inhibition. The distribution of 4.1 in BAEC on a plasma fibronectin substrate is complex, having partial codistribution with cytoplasmic AF and a unique perinuclear staining. In contrast, on a collagen type I/III substrate, 4.1 is localized, in part, to peripheral areas of cell-cell contact distinct from the dense peripheral band staining of AF. During migration on this substrate, 4.1 had a filamentous distribution having partial codistribution with AF. Indirect immunofluorescence staining of cross-sections of bovine calf aortae revealed a cortical staining pattern in the aortic endothelial cells with staining noted on the luminal and basolateral aspects of the cells. These data suggest that, in endothelial cells, protein 4.1 is a cortical membrane protein which may function to link actin filaments to other skeletal proteins such as spectrin. These findings also suggest an active role for protein 4.1 in cytoskeletal reorganization events which can occur in response to external stimuli, such as the extracellular matrix or contact with other cells.  相似文献   

10.
A population of band 3 proteins in the human erythrocyte membrane is known to have restricted rotational mobility due to interaction with cytoskeletal proteins. We have further investigated the cause of this restriction by measuring the effects on band 3 rotational mobility of rebinding ankyrin and band 4.1 to ghosts stripped of these proteins as well as spectrin and actin. Rebinding either ankyrin or 4.1 alone has no detectable effect on band 3 mobility. Rebinding both these proteins together does, however, reimpose a restriction on band 3 rotation. The effect on band 3 rotational mobility of rebinding ankyrin and 4.1 are similar irrespective of whether or not band 4.2 is removed from the membrane. We suggest that ankyrin and 4.1 together promote the formation of slowly rotating clusters of band 3.  相似文献   

11.
T Jns  D Drenckhahn 《The EMBO journal》1992,11(8):2863-2867
Linkages of the cytoskeleton to integral membrane proteins of the plasma membrane have been shown to be important for diverse cellular functions. The erythrocyte membrane provides the best studied example of how the spectrin-actin based membrane cytoskeleton is linked via two proteins, ankyrin and protein 4.1, to the anion exchanger (anion exchanger 1, AE1). Although these and other types of cytoskeleton-membrane connections have been well documented by in vitro binding studies it has not been possible to establish any of such interactions by defining the binding interface at the amino acid level. In the present study we have performed binding studies between protein 4.1 and AE1 using peptides and corresponding idiotypic and anti-idiotypic antibodies to show that arginine-rich clusters of the cytoplasmic domain of AE1 (IRRRY/LRRRY) serve as a major binding site for a motif with opposite charge and identical hydrophobicity present on the membrane-binding domain of protein 4.1 (LEEDY). Both motifs appear to be highly conserved during evolution and may also be involved in other types of cytoskeleton-membrane association, i.e. in binding of protein 4.1 to the glycophorins.  相似文献   

12.
13.
We have purified the human erythrocyte membrane protein band 4.2 to greater than 85% homogeneity. The protein was extracted from spectrin-actin-depleted inside-out vesicles in a pH 11 medium and purified by gel filtration in the presence of 1 M KI. The purified protein was heterogeneous and had an average S20,w of 5.5 and an average Stokes radius of 82 A. By electron microscopy, the protein appeared heterogeneous in size and shape, having a diameter ranging from 80 to 150 A. The protein bound saturably to band 4.2-depleted red cell inside-out vesicles, and the binding exhibited a concave Scatchard plot. Binding was reduced greater than 90% by proteolytic digestion of membranes. Digestion studies suggested that there are two classes of binding sites for band 4.2 on the cytoplasmic aspect of red cell membranes, one of which is likely to be band 3. The purified 43-kDa cytoplasmic domain of band 3 competed for band 4.2 binding to red cell membranes and could completely abolish binding when added at a concentration of greater than 200 micrograms/ml. The purification of band 4.2 and the characterization of its association with red cell membranes should facilitate the discovery of the function of this major red cell membrane protein.  相似文献   

14.
A new and rapid method is described for the preparation of protein 4.1, the protein which modulates the interaction between spectrin and actin in the membrane cytoskeleton of the red cell. The method is based on the dissociation of purified membrane cytoskeletons in concentrated Tris at neutral pH, followed by gel filtration in the same medium. This procedure also yields spectrin and actin, as well as the fourth cytoskeletal constituent, protein 4.9, in relatively pure form, and ankyrin. Protein 4.1 is monomeric under our conditions of solvent and protein concentration, with a relative molecular mass, as determined from sedimentation equilibrium, of about 78 000; its sedimentation coefficient and Stokes' radius are those of a globular, though somewhat asymmetric or flexible molecule. It forms a strong complex with F-actin and spectrin. Protein 4.9 is also recovered in active form, and will bind strongly to F-actin.  相似文献   

15.
The endogenous respiration of the rumen ciliate Dasytricha ruminantium maintained under an O2 tension of 2kPa (approximately 0.02 atm) was partially inhibited by KCN (40% inhibition) and NaN3 (58% inhibition). The organisms lack cytochromes, and sensitivity of respiration to KCN, NaN3, chloroquine and quercetin suggest that the operation of flavoprotein-iron-sulphur-mediated electron transport. As in Tritrichomonas foetus, hydrogenosomal respiration can be stimulated by the addition of CoA in the presence of 0.025% Triton X-100; stimulation by ADP was not detected. Stimulation of pyruvate-supported O2 uptake by Pi suggests that acetate is produced via acetyl phosphate.  相似文献   

16.
Of the several proteins that bind along the cytoplasmic domain of erythrocyte membrane band 3, only the sites of interaction of proteins 4.1 and 4.2 remain to be at least partially localized. Using five independent techniques, we have undertaken to map and characterize the binding site of band 4.1 on band 3. First, transfer of a radioactive cross-linker (125I-2-(p-azido-salicylamido)ethyl-1-3-dithiopropionate) from purified band 4.1 to its binding sites on stripped inside-out erythrocyte membrane vesicles (stripped IOVs) revealed major labeling of band 3, glycophorin C, and glycophorin A. Proteolytic mapping of the stripped IOVs then demonstrated that the label on band 3 was confined largely to a fragment comprising residues 1-201. Second, competitive binding experiments with Fab fragments of monoclonal and peptide-specific polyclonal antibodies to numerous epitopes along the cytoplasmic domain of band 3 displayed stoichiometric competition only with Fabs to epitopes between residues 1 and 91 of band 3. Weak competition was also observed with Fabs to a sequence of the cytoplasmic domain directly adjacent to the membrane-spanning domain, but only at 50-100-fold excess of Fab. Third, band 4.1 protected band 3 from chymotryptic hydrolysis at tyrosine 46 and to a much lesser extent at a site within the junctional peptide connecting the membrane-spanning and cytoplasmic domains of band 3. Fourth, ankyrin, which has been previously shown to interact with band 3 both near a putative central hinge and at the N terminus competed with band 4.1 for band 3 in stripped IOVs. Since band 4.1 does not associate with band 3 near the flexible central hinge, the competition with ankyrin can be assumed to derive from a mutual association with the N terminus. Finally, a synthetic peptide corresponding to residues 1-15 of band 3 was found to mildly inhibit band 4.1 binding to stripped IOVs. Taken together, these data suggest that band 4.1 binds band 3 predominantly near the N terminus, with a possible secondary site near the junction of the cytoplasmic domain and the membrane.  相似文献   

17.
Correlation between protein 4.1a/4.1b ratio and erythrocyte life span   总被引:5,自引:0,他引:5  
Erythrocyte membranes from various healthy mammals contained a doublet of protein 4.1a and 4.1b, which appeared to differ by 2-3 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The ratio of protein 4.1a/4.1b showed much variety among animal species, and the 4.1a/4.1b ratio correlated to the mean erythrocyte life span, that is, the mean cell age in circulating blood. We also found that the 4.1b is the predominant form in the immature erythroid cells such as reticulocytes and K562 cells. In addition, the 4.1b but not 4.1a protein was metabolically labeled with [35S]methionine in the erythropoietic cells from anemic mouse. Immunological detection showed that there is a doublet of minor variants of protein 4.1 with apparent molecular masses slightly more than those of 4.1a and 4.1b. The ratio of these minor isoforms designated as 4.1a + and 4.1b + revealed the alteration during erythrocyte senescence as observed in 4.1a/4.1b ratio. These results show that protein 4.1 may be synthesized as 4.1b and 4.1b + and intercalated into membrane skeletons at an early stage of erythroidal differentiation, and that the posttranslational modification into 4.1a and 4.1a + appears to occur by a common mechanism in many mammalian species. Feline erythrocytes, however, appeared to lack such a postsynthetic processing of protein 4.1, and exhibited one major component of 4.1b with the other minor variant of 4.1b +.  相似文献   

18.
Reconstitution of glucose transport using human erythrocyte band 3   总被引:4,自引:0,他引:4  
A chromosomal histone, H2S, specific to the mouse testis has been purified. Amino acid analysis indicated lack of cysteine and a high basic amino acid content typical of histones. Specific antibodies against histones H2S have been generated in rabbits and partially purified using (NH4)2SO4 precipitation and ion-exchange chromatography. Protein transfer experiments indicate presence of antigenically similar histones in the rat and rabbit testes but not in the guinea pig and dog testes. In addition, histone complement of somatic tissues such as lung, kidney, liver and spleen lacked antigenically similar proteins. Immunocytochemical studies using peroxidase-antiperoxidase complex indicated presence of immunoreactive cells in the seminiferous epithelium which were lacking in the interstitium. These data demonstrate histone H2S to be a unique histone associated with spermatogenesis in the mouse.  相似文献   

19.
Characterization of human erythrocyte cytoskeletal ATPase   总被引:2,自引:0,他引:2  
Human erythrocyte cytoskeletal ATPase was extracted with 0.2 mM ATP (pH 8.0) from Triton X-100 treated ghosts. The ATPase fraction contained mainly spectrin, actin, and band 4.1. When the ATPase fraction was applied to a Sepharose 4B column, 90% of the ATPase activity was recovered in a spectrin, actin, and band 4.1 complex fraction and none was detected in the spectrin fraction. A specific activity of the complex ATPase was 60-120 nmol/(mg protein X h). No ATPase activity was detected in the presence of EDTA. The presence of magnesium in the incubation medium was essential for the ATPase activity. The activity was activated by KCl and was almost completely inhibited by 10(-5) M free calcium in the presence of 0.2 mM MgCl2. The Ki for Ca2+ was 7 X 10(-7) M. Phalloidin and DNase 1, which affect actin, inhibited this K,Mg-ATPase activity by 95%, but cytochalasin B did not inhibit it. N-Ethylmaleimide activated the ATPase 1.6-fold. The order of affinity for nucleotides was ATP greater than ITP greater than CTP, ADP, AMP-PNP, GTP. A specific ATPase activity of purified actin was 50 nmol/(mg X h). These results suggest that the cytoskeletal ATPase is actin ATPase and the actin ATPase is activated by spectrin and band 4.1.  相似文献   

20.
A structural model of human erythrocyte protein 4.1   总被引:29,自引:0,他引:29  
Limited proteolysis and specific chemical cleavage methods have enabled a detailed structural characterization of human erythrocyte protein 4.1. This protein is composed of two chemically very similar polypeptide chains (a and b) with apparent molecular masses of 80,000 and 78,000 daltons. Cleavage of protein 4.1 at cysteine residues by 2-nitro-5-thiocyanobenzoic acid produces a series of doublets which differ by approximately 2,000 daltons and have identical peptide maps. Alignment of these peptides by mapping analysis has localized 4 cysteine residues within a 17,000-dalton segment on both a and b polypeptides. Mild chymotryptic treatment at 0 degrees C cleaves protein 4.1 primarily in three central locations and generates two families of unrelated peptides. Analysis of these fragments in two-dimensional gels and by peptide mapping reveals an unusual polarity in protein 4.1 structure in that each polypeptide chain contains two segments, one relatively acidic the other basic, that are segregated at opposite ends of the molecule. The basic region is digested into a cysteine-rich 30,000-dalton domain which resists further breakdown while the acidic region is readily degraded into smaller fragments. The peptides derived from the acidic region all appear as doublets suggesting that protein 4.1 a and b polypeptides differ close to the terminus of the acidic end. Similar phosphorylation sites occur on both polypeptides within a segment some 24,000-34,000 daltons from the acidic terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号