首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli alkaline phosphatase (AP) and human lysozyme (h-LYZ), which contain two and four disulfide bonds, respectively, were expressed in a cell-free protein synthesis system constructed from Spodoptera frugiperda 21 (Sf21) cells. AP was expressed in a soluble and active form using the insect cell-free system under non-reducing conditions, and h-LYZ was expressed in a soluble and active form under non-reducing conditions after addition of reduced glutathione (GSH), oxidized glutathione (GSSG), and protein disulfide isomerase (PDI). The in vitro synthesized proteins were purified by means of a Strep-tag attached to their C termini. Approximately 41 microg AP and 30 microg h-LYZ were obtained from 1 mL each of the reaction mixture. The efficiency of protein synthesis approached that measured under reducing conditions. Analysis of the disulfide bond arrangements by MALDI-TOF MS showed that disulfide linkages identical to those observed in the wild-type proteins were formed.  相似文献   

2.
3.
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.  相似文献   

4.
According to the model of translation initiation in eukaryotes, the 40S ribosomal subunit binds to capped 5'-end of mRNA and subsequently migrates along 5'-UTR in searching for initiation codon. However, it remains unclear whether the migration is the result of a random one-dimensional diffusion, or it is an energy-driven unidirectional movement. To address this issue, the method of continuous monitoring of protein synthesis in situ was used for high precision measurements of the times required for translation of mRNA with 5'-UTRs of different lengths and structures in mammalian and plant cell-free systems. For the first time, the relationship between the scanning time and the 5'-UTR length was determined and their linear correlation was experimentally demonstrated. The conclusion is made that the ribosome migration is an unidirectional motion with the rate being virtually independent of a particular mRNA sequence and secondary structure.  相似文献   

5.
S E Hasnain  B Nakhai 《Gene》1990,91(1):135-138
A cDNA encoding the firefly luciferase [Photinus luciferin: oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolyzing), EC 1.13.12.7] was cloned downstream from the polyhedrin gene promoter of Autographa californica nuclear polyhedrosis virus and expressed in Spodoptera frugiperda clone-9 cells. Synthesis of luciferase (Luc) was accurately measured in insect cells growing in a 96-well plate, by a simple, rapid, nonradioactive, inexpensive and sensitive method based on fogging of x-ray film. Luc was produced in a coordinate fashion during virus infection. The Luc synthesized in insect cells was not secreted into the medium but was contained within the cell. Our findings suggest that Luc can be used as a superior reporter enzyme for molecular genetic analyses of baculovirus regulatory signals involved in high level expression of foreign genes, protein processing, targeting and stability in insect cells.  相似文献   

6.
We constructed a recombinant baculovirus containing cardiac Na(+)-Ca2+ exchanger cDNA under control of the polyhedrin promoter. When either Sf9 or Sf21 insect cells are infected with the recombinant baculovirus, both Na(+)-Ca2+ exchanger protein and Na(+)-Ca2+ exchange activity are expressed at high level. The exchanger protein can be detected either by immunoblot or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole cell lysate. At maximal expression, the exchanger protein comprises about 3-5% of total cell protein. The Na(+)-Ca2+ exchanger can be purified by alkaline extraction of infected cells followed by elution from a Bio-Rad Prep Cell. The expressed exchanger, in contrast to the native sarcolemmal exchanger, is not glycosylated. Sf9 cells expressing the exchanger are intensely stained by anti-exchanger antibodies as observed by immunofluorescence. The expressed exchanger is predominantly in the cell plasma membrane since it is susceptible to extracellular trypsin. In 45Ca2+ flux experiments, the expressed Na(+)-Ca2+ exchange activity is about 4-fold higher than that in cultured neonatal rat heart cells. The expressed exchanger was also analyzed electrophysiologically using whole cell patch clamp techniques. The characteristics of inward exchange currents in infected Sf21 cells are very similar to those of ventricular myocytes, although of a larger magnitude.  相似文献   

7.
8.
9.
10.
Argininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that endothelial AS mRNA can be initiated from multiple start sites, generating co-expressed mRNA variants with different 5'-untranslated regions (5'-UTRs). One of the 5'-UTRs, the shortest form, represents greater than 90% of the total AS mRNA. Two other extended 5'-UTR forms of AS mRNA, resulting from upstream initiations, contain an out-of-frame, upstream open reading frame (uORF). In this study, the function of the extended 5'-UTRs of AS mRNA was investigated. Single base insertions to place the uORF in-frame, and mutations to extend the uORF, demonstrated functionality, both in vitro with AS constructs and in vivo with luciferase constructs. Overexpression of the uORF suppressed endothelial AS protein expression, whereas specific silencing of the uORF AS mRNAs resulted in the coordinate up-regulation of AS protein and NO production. Expression of the full-length of the uORF was necessary to mediate a trans-suppressive effect on endothelial AS expression, demonstrating that the translation product itself affects regulation. In conclusion, the uORF found in the extended, overlapping 5'-UTR AS mRNA species suppresses endothelial AS expression, providing a novel mechanism for regulating endothelial NO production by limiting the availability of arginine.  相似文献   

11.
A DNA sequence upstream from the polyhedrin gene of baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV) was found to activate strongly the expression of full or minimal promoters derived from AcMNPV and other sources. Promoters tested included the minimal CMV (CMVm) promoter from human cytomegalovirus, the full heat shock 70 promoter from Drosophila, and the minimal p35 promoter from baculovirus. Deletion and mutagenesis analyses showed that this functional polyhedrin upstream (pu) activator sequence contains three open reading frames (ORFs), ORF4, ORF5, and lef2. In plasmid transfection assays, the pu sequence was able to confer high level luciferase expression driven by all of these full or minimal promoters in insect Sf21 cells. A known baculovirus enhancer, the homologous region (hr) of AcMNPV, further enhanced the expression of these promoters. Experiments showed that although multiple hr sequences function in an additive manner, pu and hr together function synergistically, resulting in as much as 18,000-fold promoter activation. Furthermore, a modified CMVm promoter containing pu and/or hr was inserted into the baculovirus genome to drive the luciferase coding region. The CMVm promoter expressed luciferase much earlier, and although it expressed a bit less than did the p10 promoter, the CMVm promoter gave rise to greater luciferase activity. Therefore, we have uncovered a cryptic viral sequence capable of activating a diverse group of promoters. Finally, these experiments demonstrate that synthetic sequences containing pu, hr, and different full or minimal promoters can generate a set of essentially unlimited novel promoters for weak to very strong expression of foreign proteins using baculovirus.  相似文献   

12.
13.
14.
Lee DF  Chen CC  Hsu TA  Juang JL 《Journal of virology》2000,74(24):11873-11880
The baculovirus expression vector system is considered to be a safe, powerful, but cell-lytic heterologous protein expression system in insect cells. We show here that there is a new baculovirus system for efficient gene transfer and expression using the popular and genetically well-understood Drosophila S2 cells. The recombinant baculovirus was constructed to carry an enhanced green fluorescent protein under the control of polyhedrin promoter as a fluorescent selection marker in the Sf21 cell line. Recombinant baculoviruses were then used to transduce S2 cells with target gene expression cassettes containing a Drosophila heat shock protein 70, an actin 5C, or a metallothionein promoter. Nearly 100% of the S2 cells showed evidence of gene expression after infection. The time course for the optimal protein expression peaked at 24 to 36 h postinfection, which is significantly earlier than a polyhedrin-driven protein expression in Sf21 cells. Importantly, S2 cells did not appear to be lysed after infection, and the protein expression levels are comparable to those of proteins under the control of polyhedrin promoter in several lepidopteran cell lines. Most surprisingly, S2 cells permit repetitive infections of multiple baculoviruses over time. These findings clearly suggest that this baculovirus-S2 system may effect the efficient gene transfer and expression system of the well-characterized Drosophila S2 cells.  相似文献   

15.
This study addresses the susceptibility of Spodoptera frugiperda (Sf9 and Sf21), Trichoplusia ni (Hi5), and S. exigua (Se301) cells to the Bombyx mori nucleopolyhedrovirus (BmNPV). Although these cells have classically been considered nonpermissive to BmNPV, the cytopathic effect, an increase in viral yield, and viral DNA synthesis by BmNPV were observed in Sf9, Sf21, and Hi5 cells, but not in Se301 cells. Very late gene expression by BmNPV in these cell lines was also detected via beta-galactosidase expression under the control of the polyhedrin promoter. Sf9 cells were most susceptible to BmNPV in all respects, followed by Sf21 and Hi5 cells in decreasing order, while the Se301 cells evidenced no distinct viral replication. This particular difference in viral susceptibility in each of the cell lines can be utilized for our understanding of the mechanisms underlying the host specificity of NPVs.  相似文献   

16.
We previously developed an in vitro translation system derived from tobacco chloroplasts. Here, we report a significantly improved in vitro translation system. By modifying preparation procedures for chloroplast extracts and reaction conditions, we achieved 100-fold higher translation activity than the previous system. The new system does not require the supplement of Escherichia coli tRNAs due to the omission of micrococcal nuclease treatment, thus the tRNA population reflects the intrinsic tRNA population in tobacco chloroplasts. The rate of translation initiation from a variety of chloroplast mRNAs may be measured by monitoring the fluorescence intensity of synthesized green fluorescent protein, which is a non-radioactive detection method. Incorporation of an amino acid linked to a fluorescent dye also allows detection of the translation products in vitro. Using our new system, we found that mRNAs carrying unprocessed or processed atpH and rbcL 5'-UTRs were efficiently translated at similar rates, whereas translation of mRNAs with processed atpB and psbB 5'-UTRs was more efficient than those with unprocessed 5'-UTRs. These results suggest that the role of 5'-UTR processing in the regulation of chloroplast gene expression differs between mRNAs. The new in vitro translation system will be a powerful tool to investigate the mechanism of chloroplast mRNA translation.  相似文献   

17.
A modified tetracycline-responsive expression system (TRES) for use in insect cells was developed. The TRES contains two components: one encodes a tetracycline-controllable transactivator (tTA) and the other contains a tet operator DNA sequence to drive the luciferase gene. Our results show that the human cytomegalovirus (CMV) promoter, an essential part for strong tTA expression in mammalian system, was not functional in insect cells. Thus further modifications were required. Functional tTA was efficiently expressed in Sf9, Sf21, and TN368 cells by the p10 promoter of Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) in plasmid form with virus co-infection. An increase of up to 258-fold of luciferase activity was detected in these cells when both components in modified TRES were co-transfected. In order to further simplify the experiment, tTA, which is driven by the p10 promoter, was inserted into AcMNPV. Luciferase activity was also strongly stimulated by the infection of this tTA expression-recombinant virus with the transfection of a plasmid containing the second TRES component expressing luciferase. The luciferase expressions in these systems, either in plasmids or the tTA gene in virus and luciferase in plasmid, were significantly suppressed by tetracycline. The time course kinetics of tetracycline action to the TRES were further studied. Within a time span of 50 h, the luciferase activities could be fully suppressed or activated, respectively, corresponding to the addition or removal of tetracycline. These experiments have established a well-regulated gene expression system for further broad applications of molecular biological studies in insect cells.  相似文献   

18.
19.
Sano K  Maeda K  Oki M  Maéda Y 《FEBS letters》2002,532(1-2):143-146
We describe a cis element that dramatically increases the expression levels of exogenous genes in baculovirus-infected insect cells. This 21 bp sequence element is derived from a 5' untranslated leader sequence of a lobster tropomyosin cDNA (L21). By using a transfer vector carrying L21, the expression levels of tropomyosin and luciferase were 20- and seven-fold higher with L21 than without L21, respectively. L21 has both the Kozak sequence and the A-rich sequence found in the polyhedrin leader sequence. We assume that both sequence elements are essential for the enhancement of protein expression in the baculovirus-based expression system.  相似文献   

20.
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号