首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, two enzymes catalyze the synthesis of methionine from homocysteine using methyltetrahydrofolate as the donor of the required methyl group: cobalamin-dependent and cobalamin-independent methionine synthases. Comparison of the mechanisms of these two enzymes offers the opportunity to examine two different solutions to the same chemical problem. We initiated the research described here to determine whether the two enzymes were evolutionarily related by comparing the deduced amino acid sequences of the two proteins. We have determined the nucleotide sequence for the metE gene, encoding the cobalamin-independent methionine synthase. Our results reveal an absence of similarity between the deduced amino acid sequences of the cobalamin-dependent and cobalamin-independent proteins and suggest that the two have arisen by convergent evolution. We have developed a rapid one-step purification of the recombinant cobalamin-independent methionine synthase (MetE) that yields homogeneous protein in high yield for mechanistic and structural studies. In the course of these studies, we identified a highly reactive thiol in MetE that is alkylated by chloromethyl ketones and by iodoacetamide. We demonstrated that alkylation of this residue, shown to be cysteine 726, results in complete loss of activity. While we are unable to deduce the role of cysteine 726 in catalysis at this time, the identification of this reactive residue suggests the possibility that this thiol functions as an intermediate methyl acceptor in catalysis, analogous to the role of cobalamin in the reaction catalyzed by the cobalamin-dependent enzyme.  相似文献   

2.
[ribose-U-14C]Methylthioadenosine (MTA) was prepared by incubating methionine with [14C-U]ATP in the presence of methionine adenosyltransferase and the resulting S-adenosylmethionine was heated to release MTA. Labelled [14C]MTA, when incubated with rat bone marrow cells, yielded [14C]formate which was used in the synthesis of adenine and guanine. Unlike 14C from sodium, formate, serine and glycine, there was no decline in 14C utilization from MTA with bone marrow cells from rats in which cobalamin had been inactivated by exposure to nitrous oxide. It was concluded that methionine via MTA is a significant contributor of single-carbon units at the formate level of oxidation and that this pathway is maintained in cobalamin 'deficiency'.  相似文献   

3.
Folic acid and the methylation of homocysteine by Bacillus subtilis   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes.  相似文献   

4.
1. The cobalamin-independent synthesis of methionine from serine and homocysteine by ultrasonic extracts of E. coli with tetrahydropteroyltriglutamate as cofactor was inhibited competitively by tetrahydropteroylmonoglutamate and derivatives which were readily converted into this compound. 2. The potency of these inhibitors was directly related to their ability to function as cofactors or substrates in the alternative, cobalamin- dependent mechanism for homocysteine methylation. 3. The cobalamin-dependent and -independent mechanisms of homocysteine methylation were both inhibited by reduced derivatives of aminopterin in a similar manner. 4. It was tentatively concluded that the inhibition was due to a competitive interaction between the folates for N(5)N(10)-methylenetetrahydrofolate reductase.  相似文献   

5.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), on the subcellular distribution of hepatic folate coenzymes was determined. In controls, cytosolic folates were 5-methyltetrahydrofolate (45%), 5- and 10-formyltetrahydrofolate (9 and 19%, respectively), and tetrahydrofolate (27%). Exposure of rats to an atmosphere containing 80% nitrous oxide for 18 h resulted in a marked shift in this distribution pattern to 5-methyltetrahydrofolate, 84%; 5- and 10-formyltetrahydrofolate, 2.1 and 9.1%, respectively; and tetrahydrofolate, 4.7%. Activity of the cytosolic enzyme, methionine synthetase, was reduced by about 84% as compared to that of air breathing controls. In controls, mitochondrial folates were 5-methyltetrahydrofolate (7.3%), 5- and 10-formyltetrahydrofolate (11.5 and 33.1%, respectively), and tetrahydrofolate (48.1%). This distribution did not change after exposure to nitrous oxide. These results show that the effects of nitrous oxide inactivation of vitamin B12 are confined to the cytosol, at least in the short term, and suggest that there is little, if any, transport of free folates between the cytosolic and mitochondrial compartments.  相似文献   

6.
Exposure of sheep to 36% nitrous oxide for 8 days (2-hr per day) led to 90%, 82% and 74% inhibition of 5-methyltetrahydrofolate-homocysteine methyltransferase in the liver, heart and brain, respectively, while there was no significant decrease in the activity of methylmalonyl-CoA mutase. There was also no change of betaine-homocysteine methyltransferase activity. The level of plasma methionine in nitrous-oxide-exposed sheep fell to 30% of its initial value. S-Adenosylmethionine level was reduced to 50% of the control value in the liver, and was also significantly decreased in the heart, but not in the brain. Excretion of formiminoglutamic acid and homocystine was also observed in the urine of sheep exposed to nitrous oxide. These results demonstrate that inhibition of 5-methyltetrahydrofolate-homocysteine methyltransferase causes a pronounced perturbation of methionine metabolism in sheep, suggesting that dietary methionine plus methionine synthesized from the methyl groups of betaine are not sufficient to meet the methyl needs for biological methylation reactions in this species and, in turn, emphasizing the role of 5-methyltetrahydrofolate-homocysteine methyltransferase in methionine synthesis in the sheep.  相似文献   

7.
1. The enzymes leading to the methylation of homocysteine have been examined in three micro-organisms: a cobalamin-producing bacterium, Bacillus megaterium; a yeast, Candida utilis; and a basidiomycete fungus, Coprinus lagopus. The yeast and the fungus contain negligible endogenous cobalamin. 2. Extracts of each organism catalyse C(1)-transfer from serine to homocysteine with a polyglutamate folate coenzyme. 3. The enzymes generating the methyl group of methionine from C-3 of serine have similar properties in each case, but different mechanisms of homocysteine transmethylation from 5-methyltetrahydrofolates were found. 4. B. megaterium contains an enzyme with properties suggestive of a vitamin B(12)-dependent homocysteine transmethylase, whereas Cand. utilis and Cop. lagopus transfer the methyl group by a reaction characteristic of the cobalamin-independent mechanism established for Escherichia coli. 5. The specificity of each transmethylase for a 5-methyltetrahydropteroylpolyglutamate is consistent with the results of analyses of endogenous folates in these organisms, which showed only conjugated forms. 6. None of the extracts catalysed methionine production from S-adenosylmethionine and homocysteine. 7. These results are compared with results now available for methionine synthesis in other organisms, which show a considerable diversity of mechanisms.  相似文献   

8.
After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested that electron flow to nitrous oxide reductase branches at the level of ubiquinone from the previously characterized electron transfer components of R. capsulata. This pathway of electron transport could include cytochrome c', a component hitherto without a recognized function. R. capsulata grew under dark anaerobic conditions in the presence of malate as carbon source and nitrous oxide as electron acceptor. This confirms that nitrous oxide respiration is linked to ATP synthesis. Phototrophically and anaerobically grown cultures of nondenitrifying strains of Rhodopseudomonas sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum also possessed nitrous oxide reductase activity.  相似文献   

9.
为探讨甲硫氨基酸对亚热带红壤硝化作用和N2O排放的影响,选择福建省建瓯市万木林保护区的山地红壤为研究对象,在土壤饱和持水量(WHC)60%和90%的条件下,开展室内培养试验.试验分为对照(CK)、添加甲硫氨基酸(M)、甲硫氨基酸和硫酸铵(MA)、甲硫氨基酸和亚硝酸钠(MN)、甲硫氨基酸和葡萄糖(MC)5个处理.结果表明: 与对照相比,M处理使土壤NH4+-N平均含量显著提高0.8%~61.3%,而NO3--N含量显著降低13.2%~40.7%;60%WHC条件下,MC处理土壤NO2--N含量高于M处理,MA、MN处理NO3--N含量高于M处理,且MN处理高于MA处理,M处理于试验后期最低,表明甲硫氨基酸抑制了硝化作用的亚硝化过程.碳添加处理使甲硫氨基酸在一定程度上降低NH4+-N含量,抑制了土壤自养硝化,并且甲硫氨基酸和碳源共同作用下NO3--N含量变化与土壤水分条件有关,在90%WHC条件下,碳加入后反硝化作用更明显;而NO3--N含量降低不足以表明是异养硝化受到抑制所致.甲硫氨基酸在一定程度上促进土壤N2O的释放,90%WHC条件下较60%WHC条件下释放量更大,且葡萄糖添加的促进效果更明显.  相似文献   

10.
为探讨甲硫氨基酸对亚热带红壤硝化作用和N2O排放的影响,选择福建省建瓯市万木林保护区的山地红壤为研究对象,在土壤饱和持水量(WHC)60%和90%的条件下,开展室内培养试验.试验分为对照(CK)、添加甲硫氨基酸(M)、甲硫氨基酸和硫酸铵(MA)、甲硫氨基酸和亚硝酸钠(MN)、甲硫氨基酸和葡萄糖(MC)5个处理.结果表明: 与对照相比,M处理使土壤NH4+-N平均含量显著提高0.8%~61.3%,而NO3--N含量显著降低13.2%~40.7%;60%WHC条件下,MC处理土壤NO2--N含量高于M处理,MA、MN处理NO3--N含量高于M处理,且MN处理高于MA处理,M处理于试验后期最低,表明甲硫氨基酸抑制了硝化作用的亚硝化过程.碳添加处理使甲硫氨基酸在一定程度上降低NH4+-N含量,抑制了土壤自养硝化,并且甲硫氨基酸和碳源共同作用下NO3--N含量变化与土壤水分条件有关,在90%WHC条件下,碳加入后反硝化作用更明显;而NO3--N含量降低不足以表明是异养硝化受到抑制所致.甲硫氨基酸在一定程度上促进土壤N2O的释放,90%WHC条件下较60%WHC条件下释放量更大,且葡萄糖添加的促进效果更明显.  相似文献   

11.
Inhalation of nitrous oxide oxidises cobalamin and, in turn, inactivates methionine synthetase which forms methionine from homocysteine and which requires cob[I]alamin as a co-factor. This study was planned to determine the effect of virtual cessation of methionine synthesis via a cobalamn-dependeent pathway, on tissue levels of methionine, S-adenosylmethionine and on related enzymes. The level of methionine in liver fell initially after exposure to N2O but was restored to pre-N2O levels after 6 days despite continuing N2O exposure. Brain methionine fell within 12 h of N2O exposure but the fall was not significant. The restoration of methionine levels is accompanied by an increase in activity of betaine homoysteine methyltransferase in liver but this enzyme was not detected in brain. The activity of methionine synthetase remained very low in both liver and brain as long as N2O inhalation was continued. There was an initial rise in liver S-adenosyl-methionine levels followed by a steady fall to 40% of its initial level after 11 days of N2O exposure. However, there was no change in the level of S-adenosylmethionine in brain during this period. The data indicate that either brain meets its requirement by increased methionine uptake from plasma or that there are alternate pathways in brain for methionine synthesis other than those requiring a cobalamin coenzyme.  相似文献   

12.
13.
Electron transport pathways to nitrous oxide in Rhodobacter species   总被引:3,自引:0,他引:3  
1. Electron transport components involved in nitrous oxide reduction in several strains of Rhodobacter capsulatus and in the denitrifying strain of Rhodobacter sphaeroides (f. sp. denitrificans) have been investigated. Detailed titrations with antimycin A and myxothiazol, inhibitors of the cytochrome bc1 complex, show that part of the electron flow to nitrous oxide passes through this complex. The sensitivity to myxothiazol varies between strains and growth conditions of R. capsulatus; the higher rates of nitrous oxide reduction correlate with the higher sensitivities. Partial inhibition of the nitrous oxide reductase enzyme with azide decreased the sensitivity to myxothiazol of the strains that had the highest nitrous oxide reductase activity. 2. Inhibition of nitrous oxide reduction in cells of R. capsulatus by myxothiazol could be restored under dark conditions by addition of N,N,N',N'-tetramethyl-p-phenylene diamine. The highest activities observed after addition of this electron carrier were found in the strains that had the highest sensitivity to myxothiazol, consistent with the premise that this inhibitor is more effective at the higher flux rates to nitrous oxide. 3. Addition of nitrous oxide to cells of R. capsulatus strain N22DNAR+ under darkness caused oxidation of both b- and c-type cytochromes. The oxidation of b cytochromes was less pronounced in the presence of myxothiazol, consistent with a role for the cytochrome bc1 complex in the electron pathway to nitrous oxide. Ferricyanide, in the absence of myxothiazol, caused a similar extent of oxidation of b cytochromes, but a greater oxidation of c-type, suggesting that there was a pool of c-type cytochrome that was not oxidisable by nitrous oxide. The time course showed that both the b- and c-type cytochromes were oxidised within a few seconds of the addition of nitrous oxide. During the following seconds there was a partial re-reduction of the cytochromes such that after approximately 1 min a lower steady-state of oxidation was attained and this persisted until the nitrous oxide was exhausted. 4. A mutant, MTCBC1, of R. capsulatus that specifically lacked a functional cytochrome bc1 complex reduced nitrous oxide, albeit at 30% of the rate shown by the parent strain MT1131. A reduced minus nitrous-oxide-oxidised difference spectrum for MTCBC1 in the absence of myxothiazol was similar to the corresponding difference spectrum observed for strain N22DNAR+ in the presence of myxothiazol. It is suggested that these difference spectra identify the cytochrome components, including a b-type, involved in a pathway that is alternative to, and independent of, the cytochrome bc1 complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In the enteric bacteria Escherichia coli and Salmonella enterica, sulfate is reduced to sulfide and assimilated into the amino acid cysteine; in turn, cysteine provides the sulfur atom for other sulfur-bearing molecules in the cell, including methionine. These organisms cannot use methionine as a sole source of sulfur. Here we report that this constraint is not shared by many other enteric bacteria, which can use either cysteine or methionine as the sole source of sulfur. The enteric bacterium Klebsiella aerogenes appears to use at least two pathways to allow the reduced sulfur of methionine to be recycled into cysteine. In addition, the ability to recycle methionine on solid media, where cys mutants cannot use methionine as a sulfur source, appears to be different from that in liquid media, where they can. One pathway likely uses a cystathionine intermediate to convert homocysteine to cysteine and is induced under conditions of sulfur starvation, which is likely sensed by low levels of the sulfate reduction intermediate adenosine-5'-phosphosulfate. The CysB regulatory proteins appear to control activation of this pathway. A second pathway may use a methanesulfonate intermediate to convert methionine-derived methanethiol to sulfite. While the transsulfurylation pathway may be directed to recovery of methionine, the methanethiol pathway likely represents a general salvage mechanism for recovery of alkane sulfide and alkane sulfonates. Therefore, the relatively distinct biosyntheses of cysteine and methionine in E. coli and Salmonella appear to be more intertwined in Klebsiella.  相似文献   

15.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), and of methionine on folate coenzyme metabolism were determined in rat liver, kidney, brain, small intestine and bone marrow cells. Nitrous oxide exposure led to an increase in the proportion of 5-methyltetrahydrofolate at the expense of other reduced folates in all tissues examined. Administration of methionine at levels up to 400 mg/kg resulted in the normalization of folate coenzyme patterns in liver as a result of the increased levels of S-adenosylmethionine. In other tissues examined, methionine had no effect on the levels of S-adenosylmethionine or S-adenosylhomocysteine, or on the distribution of folate coenzymes. These results are consistent with the methyl trap hypothesis as the explanation of the relationship between vitamin B12 and folate metabolism, and provide direct evidence that the sparing effect of methionine on folate metabolism is a phenomenon restricted to the liver.  相似文献   

16.
Formate is oxidized to CO2 in the rat by folate-dependent reactions. Nitrous oxide treatment inhibited hepatic methionine synthetase activity, reduced hepatic S-adenosyl-l-methionine (Ado-Met) and tetrahydrofolate (H4 folate) concentrations and decreased the rate of formate oxidation in the rat. The administration of methionine to nitrous oxide-treated rats increased hepatic Ado-Met concentrations and restored hepatic H4folate levels and formate oxidation to control values but did not reverse the inhibition of methionine synthetase. Positive correlations were observed between hepatic Ado-Met levels and H4folate concentrations and between hepatic H4folate concentrations and formate oxidation. These results suggest that alterations in hepatic H4folate concentrations may profoundly influence the oxidation of one-carbon compounds. They confirm the importance of the methionine synthetase reaction as a major source of regeneration of H4folate. These findings also indicate that methionine acts at a site other than the methionine synthetase reaction to restore hepatic H4folate concentrations and formate oxidation to control values in nitrous oxide-treated rats.  相似文献   

17.
Cobalamin-dependent methionine synthase   总被引:9,自引:0,他引:9  
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate to homocysteine, producing tetrahydrofolate and methionine. Insufficient availability of cobalamin, or inhibition of methionine synthase by exposure to nitrous oxide, leads to diminished activity of this enzyme. In humans, severe inhibition of methionine synthase results in the development of megaloblastic anemia, and eventually in subacute combined degeneration of the spinal cord. It also results in diminished intracellular folate levels and a redistribution of folate derivatives. In this review, we summarize recent progress in understanding the catalysis and regulation of this important enzyme from both bacterial and mammalian sources. Because inhibition of mammalian methionine synthase can restrict the incorporation of methyltetrahydrofolate from the blood into cellular folate pools that can be used for nucleotide biosynthesis, it is a potential chemotherapeutic target. The review emphasizes the mechanistic information that will be needed in order to design rational inhibitors of the enzyme.  相似文献   

18.
During infection or denitrification, bacteria encounter reactive nitrogen species. Although the molecular targets of and defensive response against nitric oxide (NO) in Escherichia coli are well studied, the response elements specific to S-nitrosothiols are less clear. Previously, we employed an integrated systems biology approach to unravel the E. coli NO-response network. Here we use a similar approach to confirm that S-nitrosoglutathione (GSNO) primarily impacts the metabolic and regulatory programs of E. coli in minimal medium by reaction with homocysteine and cysteine and subsequent disruption of the methionine biosynthesis pathway. Targeting of homocysteine and cysteine results in altered regulatory activity of MetJ, MetR, and CysB, activation of the stringent response and growth inhibition. Deletion of metJ or supplementation with methionine strongly attenuated the effect of GSNO on growth and gene expression. Furthermore, GSNO inhibited the ArcAB two-component system. Consistent with the underlying nitrosative and thiol-oxidative chemistry, growth inhibition and the majority of the regulatory perturbations were dependent upon GSNO internalization by the Dpp dipeptide transporter. Contrastingly, perturbation of NsrR appeared to be a result of the submicromolar levels of NO released from GSNO and did not require GSNO internalization.  相似文献   

19.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

20.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号