首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Site APP-cleaving enzyme (BACE) is a membrane-bound aspartyl protease involved in the production of Alzheimer's disease (AD) Aβ amyloid peptides. This enzyme is ubiquitously expressed, with highest levels in the brain and pancreas. Its cellular trafficking is tightly controlled as it recycles between endosomes and trans-Golgi network. BACE expression increases in response to aging and various stress stimuli. It is elevated in the brain cortex of AD sufferers, and increased levels of BACE in the cerebrospinal fluid of patients with mild cognitive impairment may provide an early biomarker of AD. BACE is considered as a rational drug target for AD therapy, and inhibitors are under development. Anomalies in the behaviour and biochemistry of BACE?/? mice have pointed to the role this enzyme plays in the processing of neuregulin and of voltage-gated sodium channel β-subunit. A full understanding of BACE biology in health and disease is needed to establish a safe AD therapy based on BACE inhibitors.  相似文献   

2.
Proteomic analysis is not limited to the analysis of serum or tissues. Synovial, peritoneal, pericardial and cerebrospinal fluid represent unique proteomes for disease diagnosis and prognosis. In particular, cerebrospinal fluid serves as a rich source of putative biomarkers that are not solely limited to neurologic disorders. Peptides, proteolytic fragments and antibodies are capable of crossing the blood-brain barrier, thus providing a repository of pathologic information. Proteomic technologies such as immunoblotting, isoelectric focusing, 2D gel electrophoresis and mass spectrometry have proven useful for deciphering this unique proteome. Cerebrospinal fluid proteins are generally less abundant than their corresponding serum counterparts, necessitating the development and use of sensitive analytical techniques. This review highlights some of the promising areas of cerebrospinal fluid proteomic research and their clinical applications.  相似文献   

3.
MicroRNAs (miRNAs) are 22 nucleotides short, non-coding and tissue-specific single-stranded RNA which modulates target gene expression. Presently, shreds of evidence confirmed that miRNAs play a key role in kidney pathophysiology. The objectives of the present review are to summarize new research data towards the latest developments in the potential use of miRNAs as a diagnostic biomarker for kidney diseases. This holistic information will update the existing knowledge of kidney disease biomarkers. “miRNA profile for Diabetic Kidney disease, Acute kidney injury, Renal fibrosis, hemodialysis, transplants, FSGS, IgAN, etc.” are the search keywords which have been used in this review. The search outcome gave an exciting insightful perception of miRNAs competence as a biomarker. Also it is observed that various samples as plasma, urine and biopsies were used for profiling the miRNA expression. The miRNAs were not only used for diagnostic biomarkers but also for therapeutic targets. Each kidney disease showed different miRNAs expression profile and few miRNAs quite common with some kidney diseases. miRNAs are simple and efficient diagnostic biomarkers for kidney diseases.  相似文献   

4.
The ubiquitin-conjugating enzymes 2C (UBE2C) is an integral component of the ubiquitin proteasome system. UBE2C consists of a conserved core domain containing the catalytic Cys residue and an N-terminal extension. The core domain is required for ubiquitin adduct formation by interacting with the ubiquitin-fold domain in the E1 enzyme, and contributes to the E3 enzyme binding. UBE2C N-terminal extension regulates E3 enzyme activity as a part of an intrinsic inhibitory mechanism. UBE2C is required for the destruction of mitotic cyclins and securin, which are essential for spindle assembly checkpoint and mitotic exit. The UBE2C mRNA and/or protein levels are aberrantly increased in many cancer types with poor clinical outcomes. Accumulation of UBE2C stimulates cell proliferation and anchorage-independent growth. UBE2C transgenic mice are prone to develop spontaneous tumors and carcinogen-induced tumor with evidence of chromosome aneuploidy.  相似文献   

5.
Oral cancer is one of the leading cancers in South-Asian countries. Despite the easy access of the oral cavity, the detection and five year survival rates of OSCC patients are dismal. Identification of non-invasive biomarkers to determine the progression and recurrence of OSCC could be of immense help to patients. Recent studies on oral cancer suggest the importance of non-invasive biomarker development. Micro-RNAs (miRNAs) are one of the important components of the cell-free nucleic acids available in different body fluids. Here, we have reviewed the current understanding of circulating miRNAs as non-invasive biomarkers in different body fluids of oral cancer patients. A number of circulating miRNAs are found to be common in the body fluids of OSCC patients, while many of these are study specific, the possible sources of this variability could be due to differences in sample processing, assay procedure, clinical stage of the disease, oral habit and environmental factors. The prognostic and therapeutic significance of these circulating miRNAs are suggested by several studies. Mir-371, mir-150, mir-21 and mir-7d were found to be potential prognostic markers, while mir-134, mir-146a, mir-338 and mir-371 were associated with metastases. The prognostic markers, mir-21 and mir-7d were also found to be significantly correlated with resistance to chemotherapy, while mir-375, mir-196 and mir-125b were significantly correlated with sensitivity to radiotherapy. Despite the promising roles of circulating miRNAs, challenges still remain in unravelling the exact regulation of these miRNAs before using them for targeted therapy.  相似文献   

6.
4-Aminophenol (4-AP) and d-serine are established rodent nephrotoxins that selectively damage renal proximal tubules. In an attempt to understand the mechanism of action of these toxicants in greater detail, a high throughput proteomics approach was used to profile protein changes in the plasma of animals treated with these compounds. Male Fischer 344 and Alderley Park rats were treated with increasing doses of 4-AP or d-serine and plasma samples were collected over time. Control groups received either saline or the non-toxic enantiomer, l-serine. Using high throughput two-dimensional gel analysis, a number of plasma proteins showing dose- and time-dependent regulation were identified. One toxicity-associated plasma protein was identified as the cellular enzyme fumarylacetoacetate hydrolase (FAH), which is known to be required for tyrosine metabolism. The FAH gene is mutated in the human genetic disorder type I tyrosinaemia, which is associated with liver and kidney abnormalities and neurological disorders. FAH was elevated in the plasma of animals treated with 4-AP and d-serine at early time points and returned to baseline levels after 3 weeks. The protein was not elevated in the plasma of control animals or those treated with l-serine. The presence of FAH in plasma is intriguing as it is normally a cellular enzyme with no known function in plasma. It is possible that 4-AP and d-serine may work through a previously unknown mechanism in the kidney via regulation of tyrosine metabolism or FAH activity. Therefore, FAH may function in a fashion analogous to the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes that are used to measure liver injury. The link between kidney toxicants and inherited tyrosinaemia also raises the possibility that FAH may be a marker of kidney toxicity in humans. These observations highlight the value of proteomics in identifying new biomarkers and providing new unprecedented insights into complex biological mechanisms.  相似文献   

7.
4-Aminophenol (4-AP) and d-serine are established rodent nephrotoxins that selectively damage renal proximal tubules. In an attempt to understand the mechanism of action of these toxicants in greater detail, a high throughput proteomics approach was used to profile protein changes in the plasma of animals treated with these compounds. Male Fischer 344 and Alderley Park rats were treated with increasing doses of 4-AP or d-serine and plasma samples were collected over time. Control groups received either saline or the non-toxic enantiomer, l-serine. Using high throughput two-dimensional gel analysis, a number of plasma proteins showing dose- and time-dependent regulation were identified. One toxicity-associated plasma protein was identified as the cellular enzyme fumarylacetoacetate hydrolase (FAH), which is known to be required for tyrosine metabolism. The FAH gene is mutated in the human genetic disorder type I tyrosinaemia, which is associated with liver and kidney abnormalities and neurological disorders. FAH was elevated in the plasma of animals treated with 4-AP and d-serine at early time points and returned to baseline levels after 3 weeks. The protein was not elevated in the plasma of control animals or those treated with l-serine. The presence of FAH in plasma is intriguing as it is normally a cellular enzyme with no known function in plasma. It is possible that 4-AP and d-serine may work through a previously unknown mechanism in the kidney via regulation of tyrosine metabolism or FAH activity. Therefore, FAH may function in a fashion analogous to the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes that are used to measure liver injury. The link between kidney toxicants and inherited tyrosinaemia also raises the possibility that FAH may be a marker of kidney toxicity in humans. These observations highlight the value of proteomics in identifying new biomarkers and providing new unprecedented insights into complex biological mechanisms.  相似文献   

8.
Human immunodeficiency virus (HIV) is recognized to be one of the most destructive pandemics in recorded history. By 2011, approximately 34 million people had been infected globally. There were 2.5 million new HIV infections just in 2011 alone according to the Joint United Nations Programme on HIV/AIDS (UNAIDS)Report (2012). With the use of highly active antiretroviral therapy (HAART), the replication of HIV virus and the progression of HIV disease can be suppressed. However, during the life-long treatment of AIDS, HIV resistance and adverse drug reactions have become serious problems.  相似文献   

9.
Introduction: The process of discovering novel biomarkers and potential therapeutic targets may be shortened using proteomic and metabolomic approaches.

Areas covered: Several complementary strategies, each one presenting different advantages and limitations, may be used with these novel approaches. In vitro studies show how cells involved in cardiovascular disease react, although the phenotype of cultured cells differs to that occurring in vivo. Tissue analysis either in human specimens or animal models may show the proteins that are expressed in the pathological process, although the presence of structural proteins may be confounding. To identify circulating biomarkers, analyzing the secretome of cultured atherosclerotic tissue, analysis of blood cells and/or plasma may be more straightforward. However, in the latter approach, high-abundant proteins may mask small molecules that could be potential biomarkers. The study of sub-proteomes such as high-density lipoproteins may be useful to circumvent this limitation. Regarding metabolomics, most studies have been performed in small populations, and we need to perform studies in large populations in order to discover robust biomarkers.

Expert commentary: It is necessary to involve the clinicians in these areas to improve the design of clinical studies, including larger populations, in order to obtain consistent novel biomarkers.  相似文献   


10.
11.
Background: Circulating microRNAs (miRNA) are present in body fluids in stable, cell-free form. Likewise, these miRNAs can be identified in various stages of coronary artery disease (CAD) such as inflammation, endothelial dysfunction, proliferation and atherosclerosis among others. miRNA expression levels can be identified.

Aims and objectives: To determine the expression of circulating miRNAs (miR-126, miR-92, miR-33, miR-145 and miR-155) in CAD patients of Indian origin.

Material and methods: miRNA profiling analysis in blood plasma was performed by quantitative real-time-PCR (qRT-PCR) in 60 angiographically verified subjects including 30 CAD patients and 30 age- and gender-matched controls. Association between the expression of all five circulating miRNAs and clinical characteristics of patients with CAD were analysed using Medcalc statistics. The severity of CAD was assessed using SYNTAX score (SS).

Results: Expression of plasma miR-33 increased by 2.9 folds in CAD patients than in control group (p value ≥0.002) also it was found that miR-33 expression levels in mild cases (SS: ≤22) were significantly higher than CAD controls. There was a modest negative correlation between miR-33 and total cholesterol/high density lipoprotein ratio, triglycerides and very low density lipoprotein.

Conclusion: The study reports a significant association between increased levels of plasma miR-33 and CAD. Thus, plasma miR-33 appears to be a promising non-invasive biomarker, but requires further validation in a large cohort.  相似文献   


12.
The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.  相似文献   

13.
Objective: The aim of the study was to evaluate the usefulness of copeptin for differentiation of hyponatremia in the course of tick-borne encephalitis (TBE) and for being a prognostic marker of the severity of TBE.

Materials and methods: One hundred and fourteen patients with TBE were included in the study. The control group consisted of 62 patients diagnosed with viral meningitis.

Results: Copeptin concentration did not differ in patients with hyponatremia and normonatremia. Urinary sodium excretion to plasma copeptin (copeptin/UNa Secretion) ratio was significantly lower in Syndrome of Inappropriate Antidiuretic Hormone (SIADH) Secretion patients than in patients with hyponatremia of other origin. Mean copeptin concentration in TBE patients was higher than in control group (VM) patients. There were no differences between patients with severe and mild course of TBE.

Conclusions: Copeptin/UNa ratio may be used as a potential biomarker of SIADH in patients with TBE. Copeptin concentration is significantly higher in patients with TBE than in viral meningitis of other origin, especially in patients aged 18–34 and >49 years old. Copeptin does not differentiate TBE of mild and severe course.  相似文献   


14.
The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.  相似文献   

15.
4-Aminophenol (4-AP) and D-serine are established rodent nephrotoxins that selectively damage renal proximal tubules. In an attempt to understand the mechanism of action of these toxicants in greater detail, a high throughput proteomics approach was used to profile protein changes in the plasma of animals treated with these compounds. Male Fischer 344 and Alderley Park rats were treated with increasing doses of 4-AP or D-serine and plasma samples were collected over time. Control groups received either saline or the non-toxic enantiomer, L-serine. Using high throughput two-dimensional gel analysis, a number of plasma proteins showing dose- and time-dependent regulation were identified. One toxicity-associated plasma protein was identified as the cellular enzyme fumarylacetoacetate hydrolase (FAH), which is known to be required for tyrosine metabolism. The FAH gene is mutated in the human genetic disorder type I tyrosinaemia, which is associated with liver and kidney abnormalities and neurological disorders. FAH was elevated in the plasma of animals treated with 4-AP and D-serine at early time points and returned to baseline levels after 3 weeks. The protein was not elevated in the plasma of control animals or those treated with L-serine. The presence of FAH in plasma is intriguing as it is normally a cellular enzyme with no known function in plasma. It is possible that 4-AP and D-serine may work through a previously unknown mechanism in the kidney via regulation of tyrosine metabolism or FAH activity. Therefore, FAH may function in a fashion analogous to the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes that are used to measure liver injury. The link between kidney toxicants and inherited tyrosinaemia also raises the possibility that FAH may be a marker of kidney toxicity in humans. These observations highlight the value of proteomics in identifying new biomarkers and providing new unprecedented insights into complex biological mechanisms.  相似文献   

16.
Calreticulin (CRT) is an endoplasmic reticulum luminal Ca(2+)-binding chaperone protein. By immunizing mice with recombinant fragment (rCRT/39-272), six clones of monoclonal antibodies (mAbs) were generated and characterized. Based on these mAbs, a microplate chemiluminescent enzyme immunoassay (CLEIA) system with a measured limit of detection of 0.09?ng/ml was developed. Using this CLEIA system, it was found that soluble CRT (sCRT) level in serum samples from 58 lung cancer patients was significantly higher than that from 40 healthy individuals (only 9 were detectable, P?相似文献   

17.
The expression of at least some biomarkers of toxicity is generally thought to precede the appearance of frank pathology. In the context of developmental toxicity, certain early indicators may be predictive of later drastic outcome. The search for predictive biomarkers of toxicity in the cells (blastomeres) of an early embryo can benefit from the fact that for normal development to proceed, the maintenance of blastomere cellular integrity during the process of transition from an embryo to a fully functional organism is paramount. Actin microfilaments are integral parts of blastomeres in the developing zebrafish embryo and contribute toward the proper progression of early development (cleavage and epiboly). In early embryos, the filamentous actin (F-actin) is present and helps to define the boundary of each blastomere as they remain adhered to each other. In our studies, we observed that when blastomeric F-actin is depolymerized by agents like gelsolin, the blastomeres lose cellular integrity, which results in abnormal larvae later in development. There are a variety of toxicants that depolymerize F-actin in early mammalian embryos, the later consequences of which are, at present, not known. We propose that very early zebrafish embryos (~5-h old) exposed to such toxicants will also respond in a like manner. In this review, we discuss the potential use of F-actin disruption as a predictive biomarker of developmental toxicity in zebrafish.  相似文献   

18.

Introduction  

At present, there is neither a laboratory test nor an imaging technique able to differentiate people with fibromyalgia (FM) from healthy controls. This lack of an objective biomarker has hampered FM recognition and research. Heart rate variability (HRV) analyses provide a quantitative marker of autonomic nervous system activity. Nighttime is a stable period in which most people are resting. Sleep is modulated by autonomic activity. Sleeping problems are prominent in FM. The objectives of this study are: 1) to explore different nocturnal HRV parameters as potential FM biomarkers and 2) to seek correlation between such HRV parameters and diverse FM symptoms.  相似文献   

19.
20.
This review outlines the concept of population proteomics and its implication in the discovery and validation of cancer-specific protein modulations. Population proteomics is an applied subdiscipline of proteomics engaging in the investigation of human proteins across and within populations to define and better understand protein diversity. Population proteomics focuses on interrogation of specific proteins from large number of individuals, utilizing top-down, targeted affinity mass spectrometry approaches to probe protein modifications. Deglycosylation, sequence truncations, side-chain residue modifications, and other modifications have been reported for myriad of proteins, yet little is know about their incidence rate in the general population. Such information can be gathered via population proteomics and would greatly aid the biomarker discovery efforts. Discovery of novel protein modifications is also expected from such large scale population proteomics, expanding the protein knowledge database. In regard to cancer protein biomarkers, their validation via population proteomics-based approaches is advantageous as mass spectrometry detection is used both in the discovery and validation process, which is essential for the detection of those structurally modified protein biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号