首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Site APP-cleaving enzyme (BACE) is a membrane-bound aspartyl protease involved in the production of Alzheimer's disease (AD) Aβ amyloid peptides. This enzyme is ubiquitously expressed, with highest levels in the brain and pancreas. Its cellular trafficking is tightly controlled as it recycles between endosomes and trans-Golgi network. BACE expression increases in response to aging and various stress stimuli. It is elevated in the brain cortex of AD sufferers, and increased levels of BACE in the cerebrospinal fluid of patients with mild cognitive impairment may provide an early biomarker of AD. BACE is considered as a rational drug target for AD therapy, and inhibitors are under development. Anomalies in the behaviour and biochemistry of BACE?/? mice have pointed to the role this enzyme plays in the processing of neuregulin and of voltage-gated sodium channel β-subunit. A full understanding of BACE biology in health and disease is needed to establish a safe AD therapy based on BACE inhibitors.  相似文献   

2.
Proteomic analysis is not limited to the analysis of serum or tissues. Synovial, peritoneal, pericardial and cerebrospinal fluid represent unique proteomes for disease diagnosis and prognosis. In particular, cerebrospinal fluid serves as a rich source of putative biomarkers that are not solely limited to neurologic disorders. Peptides, proteolytic fragments and antibodies are capable of crossing the blood-brain barrier, thus providing a repository of pathologic information. Proteomic technologies such as immunoblotting, isoelectric focusing, 2D gel electrophoresis and mass spectrometry have proven useful for deciphering this unique proteome. Cerebrospinal fluid proteins are generally less abundant than their corresponding serum counterparts, necessitating the development and use of sensitive analytical techniques. This review highlights some of the promising areas of cerebrospinal fluid proteomic research and their clinical applications.  相似文献   

3.
4-Aminophenol (4-AP) and d-serine are established rodent nephrotoxins that selectively damage renal proximal tubules. In an attempt to understand the mechanism of action of these toxicants in greater detail, a high throughput proteomics approach was used to profile protein changes in the plasma of animals treated with these compounds. Male Fischer 344 and Alderley Park rats were treated with increasing doses of 4-AP or d-serine and plasma samples were collected over time. Control groups received either saline or the non-toxic enantiomer, l-serine. Using high throughput two-dimensional gel analysis, a number of plasma proteins showing dose- and time-dependent regulation were identified. One toxicity-associated plasma protein was identified as the cellular enzyme fumarylacetoacetate hydrolase (FAH), which is known to be required for tyrosine metabolism. The FAH gene is mutated in the human genetic disorder type I tyrosinaemia, which is associated with liver and kidney abnormalities and neurological disorders. FAH was elevated in the plasma of animals treated with 4-AP and d-serine at early time points and returned to baseline levels after 3 weeks. The protein was not elevated in the plasma of control animals or those treated with l-serine. The presence of FAH in plasma is intriguing as it is normally a cellular enzyme with no known function in plasma. It is possible that 4-AP and d-serine may work through a previously unknown mechanism in the kidney via regulation of tyrosine metabolism or FAH activity. Therefore, FAH may function in a fashion analogous to the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes that are used to measure liver injury. The link between kidney toxicants and inherited tyrosinaemia also raises the possibility that FAH may be a marker of kidney toxicity in humans. These observations highlight the value of proteomics in identifying new biomarkers and providing new unprecedented insights into complex biological mechanisms.  相似文献   

4.
4-Aminophenol (4-AP) and d-serine are established rodent nephrotoxins that selectively damage renal proximal tubules. In an attempt to understand the mechanism of action of these toxicants in greater detail, a high throughput proteomics approach was used to profile protein changes in the plasma of animals treated with these compounds. Male Fischer 344 and Alderley Park rats were treated with increasing doses of 4-AP or d-serine and plasma samples were collected over time. Control groups received either saline or the non-toxic enantiomer, l-serine. Using high throughput two-dimensional gel analysis, a number of plasma proteins showing dose- and time-dependent regulation were identified. One toxicity-associated plasma protein was identified as the cellular enzyme fumarylacetoacetate hydrolase (FAH), which is known to be required for tyrosine metabolism. The FAH gene is mutated in the human genetic disorder type I tyrosinaemia, which is associated with liver and kidney abnormalities and neurological disorders. FAH was elevated in the plasma of animals treated with 4-AP and d-serine at early time points and returned to baseline levels after 3 weeks. The protein was not elevated in the plasma of control animals or those treated with l-serine. The presence of FAH in plasma is intriguing as it is normally a cellular enzyme with no known function in plasma. It is possible that 4-AP and d-serine may work through a previously unknown mechanism in the kidney via regulation of tyrosine metabolism or FAH activity. Therefore, FAH may function in a fashion analogous to the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes that are used to measure liver injury. The link between kidney toxicants and inherited tyrosinaemia also raises the possibility that FAH may be a marker of kidney toxicity in humans. These observations highlight the value of proteomics in identifying new biomarkers and providing new unprecedented insights into complex biological mechanisms.  相似文献   

5.
Human immunodeficiency virus (HIV) is recognized to be one of the most destructive pandemics in recorded history. By 2011, approximately 34 million people had been infected globally. There were 2.5 million new HIV infections just in 2011 alone according to the Joint United Nations Programme on HIV/AIDS (UNAIDS)Report (2012). With the use of highly active antiretroviral therapy (HAART), the replication of HIV virus and the progression of HIV disease can be suppressed. However, during the life-long treatment of AIDS, HIV resistance and adverse drug reactions have become serious problems.  相似文献   

6.
Calreticulin (CRT) is an endoplasmic reticulum luminal Ca(2+)-binding chaperone protein. By immunizing mice with recombinant fragment (rCRT/39-272), six clones of monoclonal antibodies (mAbs) were generated and characterized. Based on these mAbs, a microplate chemiluminescent enzyme immunoassay (CLEIA) system with a measured limit of detection of 0.09?ng/ml was developed. Using this CLEIA system, it was found that soluble CRT (sCRT) level in serum samples from 58 lung cancer patients was significantly higher than that from 40 healthy individuals (only 9 were detectable, P?相似文献   

7.
Objective: The aim of the study was to evaluate the usefulness of copeptin for differentiation of hyponatremia in the course of tick-borne encephalitis (TBE) and for being a prognostic marker of the severity of TBE.

Materials and methods: One hundred and fourteen patients with TBE were included in the study. The control group consisted of 62 patients diagnosed with viral meningitis.

Results: Copeptin concentration did not differ in patients with hyponatremia and normonatremia. Urinary sodium excretion to plasma copeptin (copeptin/UNa Secretion) ratio was significantly lower in Syndrome of Inappropriate Antidiuretic Hormone (SIADH) Secretion patients than in patients with hyponatremia of other origin. Mean copeptin concentration in TBE patients was higher than in control group (VM) patients. There were no differences between patients with severe and mild course of TBE.

Conclusions: Copeptin/UNa ratio may be used as a potential biomarker of SIADH in patients with TBE. Copeptin concentration is significantly higher in patients with TBE than in viral meningitis of other origin, especially in patients aged 18–34 and >49 years old. Copeptin does not differentiate TBE of mild and severe course.  相似文献   


8.
9.
The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.  相似文献   

10.
Background: Circulating microRNAs (miRNA) are present in body fluids in stable, cell-free form. Likewise, these miRNAs can be identified in various stages of coronary artery disease (CAD) such as inflammation, endothelial dysfunction, proliferation and atherosclerosis among others. miRNA expression levels can be identified.

Aims and objectives: To determine the expression of circulating miRNAs (miR-126, miR-92, miR-33, miR-145 and miR-155) in CAD patients of Indian origin.

Material and methods: miRNA profiling analysis in blood plasma was performed by quantitative real-time-PCR (qRT-PCR) in 60 angiographically verified subjects including 30 CAD patients and 30 age- and gender-matched controls. Association between the expression of all five circulating miRNAs and clinical characteristics of patients with CAD were analysed using Medcalc statistics. The severity of CAD was assessed using SYNTAX score (SS).

Results: Expression of plasma miR-33 increased by 2.9 folds in CAD patients than in control group (p value ≥0.002) also it was found that miR-33 expression levels in mild cases (SS: ≤22) were significantly higher than CAD controls. There was a modest negative correlation between miR-33 and total cholesterol/high density lipoprotein ratio, triglycerides and very low density lipoprotein.

Conclusion: The study reports a significant association between increased levels of plasma miR-33 and CAD. Thus, plasma miR-33 appears to be a promising non-invasive biomarker, but requires further validation in a large cohort.  相似文献   


11.
4-Aminophenol (4-AP) and D-serine are established rodent nephrotoxins that selectively damage renal proximal tubules. In an attempt to understand the mechanism of action of these toxicants in greater detail, a high throughput proteomics approach was used to profile protein changes in the plasma of animals treated with these compounds. Male Fischer 344 and Alderley Park rats were treated with increasing doses of 4-AP or D-serine and plasma samples were collected over time. Control groups received either saline or the non-toxic enantiomer, L-serine. Using high throughput two-dimensional gel analysis, a number of plasma proteins showing dose- and time-dependent regulation were identified. One toxicity-associated plasma protein was identified as the cellular enzyme fumarylacetoacetate hydrolase (FAH), which is known to be required for tyrosine metabolism. The FAH gene is mutated in the human genetic disorder type I tyrosinaemia, which is associated with liver and kidney abnormalities and neurological disorders. FAH was elevated in the plasma of animals treated with 4-AP and D-serine at early time points and returned to baseline levels after 3 weeks. The protein was not elevated in the plasma of control animals or those treated with L-serine. The presence of FAH in plasma is intriguing as it is normally a cellular enzyme with no known function in plasma. It is possible that 4-AP and D-serine may work through a previously unknown mechanism in the kidney via regulation of tyrosine metabolism or FAH activity. Therefore, FAH may function in a fashion analogous to the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes that are used to measure liver injury. The link between kidney toxicants and inherited tyrosinaemia also raises the possibility that FAH may be a marker of kidney toxicity in humans. These observations highlight the value of proteomics in identifying new biomarkers and providing new unprecedented insights into complex biological mechanisms.  相似文献   

12.
The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.  相似文献   

13.

Introduction  

At present, there is neither a laboratory test nor an imaging technique able to differentiate people with fibromyalgia (FM) from healthy controls. This lack of an objective biomarker has hampered FM recognition and research. Heart rate variability (HRV) analyses provide a quantitative marker of autonomic nervous system activity. Nighttime is a stable period in which most people are resting. Sleep is modulated by autonomic activity. Sleeping problems are prominent in FM. The objectives of this study are: 1) to explore different nocturnal HRV parameters as potential FM biomarkers and 2) to seek correlation between such HRV parameters and diverse FM symptoms.  相似文献   

14.
The expression of at least some biomarkers of toxicity is generally thought to precede the appearance of frank pathology. In the context of developmental toxicity, certain early indicators may be predictive of later drastic outcome. The search for predictive biomarkers of toxicity in the cells (blastomeres) of an early embryo can benefit from the fact that for normal development to proceed, the maintenance of blastomere cellular integrity during the process of transition from an embryo to a fully functional organism is paramount. Actin microfilaments are integral parts of blastomeres in the developing zebrafish embryo and contribute toward the proper progression of early development (cleavage and epiboly). In early embryos, the filamentous actin (F-actin) is present and helps to define the boundary of each blastomere as they remain adhered to each other. In our studies, we observed that when blastomeric F-actin is depolymerized by agents like gelsolin, the blastomeres lose cellular integrity, which results in abnormal larvae later in development. There are a variety of toxicants that depolymerize F-actin in early mammalian embryos, the later consequences of which are, at present, not known. We propose that very early zebrafish embryos (~5-h old) exposed to such toxicants will also respond in a like manner. In this review, we discuss the potential use of F-actin disruption as a predictive biomarker of developmental toxicity in zebrafish.  相似文献   

15.
Introduction: Graft-versus-host disease (GVHD) is a frequent and potentially life-threatening complication that occurs in many patients who undergo hematopoietic stem cell transplantation. In an effort to develop blood and tissue-based biochemical assays for GVHD diagnosis, high throughput proteomic platforms have been widely utilized for the identification and validation of disease biomarkers for both acute and chronic GVHD.

Areas covered: This article reviews biomarker research findings on acute and chronic GVHD ascertained by studying peripheral blood, urine and saliva that gives biological information on systemic or localized disease. While the primary focus of GVHD biomarker discovery has been on identification and validation of prognostic and predictive biomarkers that might allow stratification of disease risk, molecular biomarkers that might aid patient diagnosis and/or response to treatment have also been reported.

Expert commentary: Unbiased as well as targeted proteomic studies of acute and chronic GVHD have identified some distinguishing features of the two diseases especially the role of certain immune cell populations. A combination of patient risk stratification using panels of biomarkers and the application of novel targeted therapeutics should help to reduce the burden of GVHD, and hence improve the quality of life for patients following hematopoietic stem cell transplantation.  相似文献   


16.
A novel and relatively simple analytical method for the separation, characterisation and semi-quantitation of phospholipids (PLs) from extracts of complex biological samples has been developed. This methodology allows PL extracts from cells and tissues to be analysed by liquid chromatography (LC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Complex mixtures of PLs were separated on a high-performance liquid chromatography (HPLC) system using 0.5% ammonium hydroxide in methanol/water/hexane/formate mixture with UV detection at 205 nm. Identification and structural characterisation of molecular species were carried out utilising ESI-MS and MS/MS in the negative ion mode.The abnormal accumulation of PLs (phospholipidosis) was induced in male Sprague-Dawley rats by administration of the cationic amphiphilic drug (CAD), amiodarone. Analysis of the PL profile of liver and lung tissues, lymphocytes and serum from treated rats was carried out using this analytical procedure (LC-ESI/MS/MS). Differences in PL profiles between treated and untreated animals were highlighted by principal component analysis (PCA). This led to the selection of a potential metabolic marker of phospholipidosis (PLD) identified as a lyso-bis-phosphatidic acid (LBPA) derivative, also known as bis(monoglycero)phosphate (BMP). This PL was absent in control animals but was present in quantifiable amounts in all samples from amiodarone-treated rats.  相似文献   

17.
This review outlines the concept of population proteomics and its implication in the discovery and validation of cancer-specific protein modulations. Population proteomics is an applied subdiscipline of proteomics engaging in the investigation of human proteins across and within populations to define and better understand protein diversity. Population proteomics focuses on interrogation of specific proteins from large number of individuals, utilizing top-down, targeted affinity mass spectrometry approaches to probe protein modifications. Deglycosylation, sequence truncations, side-chain residue modifications, and other modifications have been reported for myriad of proteins, yet little is know about their incidence rate in the general population. Such information can be gathered via population proteomics and would greatly aid the biomarker discovery efforts. Discovery of novel protein modifications is also expected from such large scale population proteomics, expanding the protein knowledge database. In regard to cancer protein biomarkers, their validation via population proteomics-based approaches is advantageous as mass spectrometry detection is used both in the discovery and validation process, which is essential for the detection of those structurally modified protein biomarkers.  相似文献   

18.
MicroRNAs (miRNAs) are directly involved in cancer initiation, progression and metastasis. Alterations of miRNAs expression in cancer tissue may be reflected in circulation. We attempted to investigate the expression and clinical significance of plasma miR-20a, miR-31 and miR-375 in patients with non-small cell lung cancer (NSCLC). The plasma levels of miR-20a, miR-31 and miR-375 in 164 NSCLC patients and 164 healthy controls (discovery cohort) were evaluated and compared among various clinicopathological characteristics. The relationship between miRNA expression and clinical outcome of NSCLC patients was examined in an independent cohort (53 cases and 53 controls). The expression level of miR-375 in tissue was also examined. Plasma miR-375 levels in NSCLC patients were significantly decreased in both patient cohorts (P < 0.05). In addition, patients with metastatic NSCLC had lower plasma miR-375 expression than those with non-metastatic NSCLC (P < 0.05). Survival analysis showed that patients with low miR-375 expression had worse overall survival rates than those with high miR-375 expression (hazard ratios (HR) = 1.537 (1.046–2.258), P = 0.029). This association was independently validated in a separate cohort of 53 NSCLC patients (HR = 2.406, 95% CI 1.170–4.945, P = 0.017). The expression level of miR-375 was also found to be significantly down-regulated in NSCLC tissues compared with paracancerous tissues (P < 0.001). These findings indicate that miR-375 has an important role in NSCLC initiation and progression, and may be an independent poor prognostic factor in NSCLC patients.  相似文献   

19.

Background

The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss.

Methodology/Principal Findings

Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB1) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands.The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB1 receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels.

Conclusions/Significance

Endocannabinoids and N-acylethanolamines are quantifiable in saliva and their levels correlate with obesity but not with feeding status. Body weight loss significantly decreases salivary AEA, which might represent a useful biomarker in obesity.  相似文献   

20.
Cathepsin B is a protease which is able to digest extracellular matrix. It is currently unknown whether cathepsin B plays a role in cervical cancer development and progression. With Q-PCR and Western blotting, we observed cathepsin B expression in cervical cancer cell line Hela cells. After the gene was silenced in HeLa cells with SiRNA, we confirmed that cathepsin B expressions at both mRNA and protein levels were significantly reduced. At the same time, cell proliferation, migration and invasion of the HeLa cells were significantly decreased compared to control cells. In addition, a significant regression of tumor growth in nude mice which received the siRNA targeted cathepsin B HeLa cells was observed. We further studied the expression of cathepsin B in a series of 169 clinical samples, including 56 invasive cervical squamous carcinoma, 85 CINs and 28 normal cervical tissues. It was found that cathepsin B expression in invasive carcinomas was significantly higher than that in the CINs and normal tissues (P<0.01). In addition, cathepsin B expression in the invasive carcinomas was positively correlated to tumor invasion depth and lymphatic metastasis. Our results indicate that cathepsin B may be a potential biomarker for further strategical clinical studies in cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号