首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the cellular localization of monocarboxylate transporters (MCTs), glucose transporters (GLUTs), and some glycolysis-related molecules in the murine female genital tract to demonstrate existence of lactate/pyruvate-dependent energy systems. MCT1, a major MCT subtype, was localized selectively in the ovarian granulosa, oviductal-ciliated cells, and vaginal epithelium; all localizations were associated with intense expressions of glycolytic enzymes. MCT1 was localized in the cell membrane of granulosa cells, including fine processes extending from cumulus cells toward oocytes. The cumulus cells and oocytes showed intense signals for lactate dehydrogenase (LDH)-A and -B, respectively. The basolateral membrane of oviductal-ciliated cells expressed MCT4 as well as MCT1, while adjacent non-ciliated cells contained an intense immunoreactivity for aldolase-C, a glycolytic enzyme. The expression of GLUTs in the ovary was generally weak with an intense expression of GLUT1 only in some vascular endothelia. The oviductal epithelium expressed GLUT1 and GLUT3, respectively, in the basolateral and apical membrane of non-ciliated cells. In the vagina, the basal layers of epithelium were immunolabeled for MCT1 with the entire length of cell membrane, and expressed abundantly both GLUT1 and LDH-A. The findings correspond well with the rich existence of lactate in the genital fluids and strongly suggest the active transport of lactate/pyruvate in the female reproductive tract, which provides favorable conditions for oocytes, sperms, and zygotes.  相似文献   

2.

Background

The neuroplastins np65 and np55 are two synapse-enriched immunoglobulin (Ig) superfamily adhesion molecules that contain 3 and 2 Ig domains respectively. Np65 is implicated in long term, activity dependent synaptic plasticity, including LTP. Np65 regulates the surface expression of GluR1 receptor subunits and the localisation of GABAA receptor subtypes in hippocampal neurones. The brain is dependent not only on glucose but on monocarboxylates as sources of energy. The. monocarboxylate transporters (MCTs) 1–4 are responsible for the rapid proton-linked translocation of monocarboxylates including pyruvate and lactate across the plasma membrane and require association with either embigin or basigin, proteins closely related to neuroplastin, for plasma membrane expression and activity. MCT2 plays a key role in providing lactate as an energy source to neurons.

Methodology/Findings

Here we use co-transfection of neuroplastins and monocarboxylate transporters into COS-7 cells to demonstrate that neuroplastins can act as ancillary proteins for MCT2. We also show that Xenopus laevis oocytes contain endogenous neuroplastin and its knockdown with antisense RNA reduces the surface expression of MCT2 and associated lactate transport. Immunocytochemical studies show that MCT2 and the neuroplastins are co-localised in rat cerebellum. Strikingly neuroplastin and MCT2 are enriched in the same parasagittal zebrin II-negative stripes.

Conclusions

These data strongly suggest that neuroplastins act as key ancillary proteins for MCT2 cell surface localisation and activity in some neuronal populations, thus playing an important role in facilitating the uptake of lactate for use as a respiratory fuel.  相似文献   

3.
Grollman EF  Philp NJ  McPhie P  Ward RD  Sauer B 《Biochemistry》2000,39(31):9351-9357
Monocarboxylate transporters (MCTs) comprise a group of highly homologous proteins that reside in the plasma membrane of almost all cells and which mediate the 1:1 electroneutral transport of a proton and a lactate ion. The isoform MCT3 is restricted to the basal membrane of the retinal pigment epithelium where it regulates lactate levels in the neural retina. Kinetic analysis of this transporter poses formidable difficulties due to the presence of multiple lactate transporters and their complex interaction with MCTs in adjacent cells. To circumvent these problems, we expressed both the MCT3 gene and a green fluorescent protein-tagged MCT3 construct in Saccharomyces cerevisiae. Since L-lactate metabolism in yeast depends on the CYB2 gene, we disrupted CYB2 to study the MCT3 transporter activity free from the complications of metabolism. Under these conditions L-lactate uptake varied inversely with pH, greater uptake being associated with lower pH. Whereas the V(max) was invariant, the K(m) increased severalfold as the pH rose from 6 to 8. In addition, MCT3 was highly resistant to a number of "classical" inhibitors of lactate transport. Last, studies with diethyl pyrocarbonate and p-chloromercuribenzenesulfonate set limitations on the locus of potential residues involved in the critical site of lactate translocation.  相似文献   

4.
Prostate cancer (PCa) is the most commonly diagnosed cancer in men worldwide. Screening and management of PCa remain controversial and, therefore, the discovery of novel molecular biomarkers is urgently needed. Alteration in cancer cell metabolism is a recognized hallmark of cancer, whereby cancer cells exhibit high glycolytic rates with subsequent lactate production, regardless of oxygen availability. To maintain the hyperglycolytic phenotype, cancer cells efficiently export lactate through the monocarboxylate transporters MCT1 and MCT4. The impact of inhibiting lactate production/extrusion on PCa cell survival and aggressiveness was investigated in vitro and ex vivo using primary tumor and metastatic PCa cell lines and the chicken embryo chorioallantoic membrane (CAM) model. In this study, we showed the metastatic PCa cell line (DU125) displayed higher expression levels of MCT1/4 isoforms and glycolysis-related markers than the localized prostate tumor-derived cell line (22RV1), indicating these proteins are differentially expressed throughout prostate malignant transformation. Moreover, disruption of lactate export by MCT1/4 silencing resulted in a decrease in PCa cell growth and motility. To support these results, we pharmacological inhibited lactate production (via inhibition of LDH) and release (via inhibition of MCTs) and a reduction in cancer cell growth in vitro and in vivo was observed. In summary, our data provide evidence that MCT1 and MCT4 are important players in prostate neoplastic progression and that inhibition of lactate production/export can be explored as a strategy for PCa treatment.  相似文献   

5.
CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 specifically interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2-CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into 'caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.  相似文献   

6.
Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ∼60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels.  相似文献   

7.
The aim of the present study was to determine the distribution of monocarboxylate transporter (MCT) subtypes 1-4 in the various structures of the rat eye by using a combination of conventional and real-time RT-PCR, immunoblotting, and immunohistochemistry. Retinal samples expressed mRNAs encoding all four MCTs. MCT1 immunoreactivity was observed in photoreceptor inner segments, Müller cells, retinal capillaries, and the two plexiform layers. MCT2 labeling was concentrated in the inner and outer plexiform layers. MCT4 immunolabeling was present only in the inner retina, particularly in putative Müller cells, and the plexiform layers. No MCT3 labeling could be observed. The retinal pigment epithelium (RPE)/choroid expressed high levels of MCT1 and MCT3 mRNAs but lower levels of MCT2 and MCT4 mRNAs. MCT1 was localized to the apical and MCT3 to the basal membrane of the RPE, whereas MCT2 staining was faint. Although MCT1-MCT4 mRNAs were all detectable in iris and ciliary body samples, only MCT1 and MCT2 proteins were expressed. These were present in the iris epithelium and the nonpigmented epithelium of the ciliary processes. MCT4 was localized to the smooth muscle lining of large vessels in the iris-ciliary body and choroid. In the cornea, MCT1 and MCT2 mRNAs and proteins were detectable in the epithelium and endothelium, whereas evidence was found for the presence of MCT4 and, to a lesser extent, MCT1 in the lens epithelium. The unique distribution of MCT subtypes in the eye is indicative of the pivotal role that these transporters play in the maintenance of ocular function. retina; eye; immunohistochemistry; polymerase chain reaction  相似文献   

8.
Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes.  相似文献   

9.
10.
We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.  相似文献   

11.
During spermatogenesis, postmeiotic germ cells utilize lactate produced by Sertoli cells as an energy metabolite. While the hormonal regulation of lactate production in Sertoli cells has been relatively well established, the transport of this energy substrate to the germ cells, particularly via the monocarboxylate transporters (MCTs), as well as the potential endocrine control of such a process remain to be characterized. Here, we report the developmentally and hormonally regulated expression of MCT2 in the testis. At Day 18, MCT2 starts to be expressed in germ cells as detected by Northern blot. The mRNA are translated into protein (40 kDa) in elongating spermatids. Ultrastructural analysis demonstrated that MCT2 protein is localized to the outer face of the cell membrane of spermatid tails. MCT2 mRNA levels are under the control of the endocrine, specifically follicle-stimulating hormone (FSH) and testosterone, and paracrine systems. Indeed, a 35-day-old rat hypophysectomy resulted in an 8-fold increase in testicular MCT2 mRNA levels. Conversely, FSH and LH administration to the hypophysectomized rats reduced MCT2 mRNA levels to the basal levels observed in intact animals. The decrease in MCT2 mRNA levels was confirmed in vitro using isolated seminiferous tubules incubated with FSH or testosterone. FSH or testosterone inhibited in a dose-dependent manner MCT2 mRNA levels with maximal inhibitory doses of 2.2 ng/ml and 55.5 ng/ml for FSH and testosterone, respectively. In addition to the endocrine control, TNFalpha and TGFbeta also exerted an inhibitory effect on MCT2 mRNA levels with a maximal effect at 10 ng/ml and 6.6 ng/ml for TGFbeta and TNFalpha, respectively. Together with previous studies, the present data reinforce the concept that among the key functions of the endocrine/paracrine systems in the testis is the control of the energy metabolism occurring in the context of Sertoli cell-germ cell metabolic cooperation where lactate is produced in somatic cells and transported to germ cells via, at least, MCT2.  相似文献   

12.
Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).  相似文献   

13.
14.
Lactate is provided to spermatogenic cells by Sertoli cells as an energy substrate and its transport is regulated by H(+)-monocarboxylate co-transporters (MCTs). In the case of several cell types it is known that MCT1 is associated with basigin and MCT2 with embigin. Here we demonstrate co-localization and co-immunoprecipitation of basigin with both MCT1 and MCT2 in sperm, whereas no interaction with embigin was detectable. An investigation of the functional activity of MCT proteins revealed that it was mainly the application of L-lactate which resulted in a decrease in pH(i) . The pH(i) changes were blocked with α-cyano-4-OH cinnamate and the preference for L-lactate-as opposed to D-Lactate-was demonstrated by the determination of ATP after exposure to both lactate isomers. We propose that basigin interacts with MCT1 and MCT2 to locate them properly in the membrane of spermatogenic cells and that this may enable sperm to utilize lactate as an energy substrate contributing to cell survival.  相似文献   

15.
Whether subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria contain monocarboxylate transporters (MCTs) is controversial. We have examined the presence of MCT1, 2, and 4 in highly purified SS and IMF mitochondria. These mitochondria were not contaminated with plasma membrane, sarcoplasmic reticulum or endosomal compartments, as the marker proteins for these sub-cellular compartments (Na+-K+-ATPase, Ca2+-ATPase, and the transferrin receptor) were not present in SS or IMF mitochondria. MCT1, MCT2, and MCT4 were all present at the plasma membrane. However, MCT1 and MCT4 were associated with SS mitochondria. In contrast, the IMF mitochondria were completely devoid of MCT1 and MCT4. However, MCT2 was associated with both SS and IMF mitochondria. These observations suggest that SS and IMF mitochondria have different capacities for metabolizing monocarboxylates. Thus, the controversy as to whether mitochondria can take up and oxidize lactate will need to take account of the different distribution of MCTs between SS and IMF mitochondria.  相似文献   

16.
Mechanisms for the removal of glutamate are vital for maintaining normal function of the retina. Five excitatory amino acid transporters have been characterized to date from neuronal tissue, all of which are expressed within the retina except excitatory amino acid transporter 4 (EAAT4). In this study we examined the expression and localization of the glutamate transporter EAAT4 in the rat retina using RT-PCR and immunocytochemistry. RT-PCR using rat EAAT4 specific primers revealed a prominent 296-bp product in the retina, cortex and cerebellum. The identity of the EAAT4 fragment was confirmed by DNA sequencing. We examined the tissue expression levels of EAAT4 in cortex, retina and cerebellum using real-time PCR. The highest expression level was found in the cerebellum. Expression in the cortex was approximately 3.1% that of the cerebellum and the retina was found to have approximately 0.8% the total cerebellar EAAT4 content. In order to examine the specific cell types within the retina that express EAAT4, we performed immunocytochemistry using a rat EAAT4 specific antiserum. Cellular processes within the nerve fibre layer of the retina were intensely labelled for EAAT4. Double labelling EAAT4 with glial fibrillary acidic protein (GFAP) revealed extensive colocalization indicating that EAAT4 is localized within astrocytes within the retina. Double labelling of EAAT4 and the glutamate transporter EAAT1 (GLAST) revealed extensive colocalization suggesting that astrocytes in the retina express at least two types of glutamate transporters. These results suggest that astrocytes within the retina are well placed to provide mechanisms for glutamate removal as well as controlling cellular excitability.This work was supported by grants from the National Health and Medical Research Council (Grant #208950) and Retina Australia.  相似文献   

17.
Monocarboxylate transporters (MCT) and sodium-bicarbonate cotransporters (NBC) transport acid/base equivalents and coexist in many epithelial and glial cells. In nervous systems, the electroneutral MCT1 isoform cotransports lactate and other monocarboxylates with H+, and is believed to be involved in the shuttling of energy-rich substrates between astrocytes and neurons. The NBC cotransports bicarbonate with sodium and generates a membrane current. We have expressed these transporter proteins, cloned from rat brain (MCT1) and human kidney (NBC), alone and together, by injecting the cRNA into oocytes of the frog Xenopus laevis, and measured intracellular pH changes and membrane currents under voltage-clamp with intracellular microelectrodes, and radiolabeled lactate uptake into the oocytes. We determined the cytosolic buffer capacity, the H+ and lactate fluxes as induced by 3 and 10 mM lactate in oocytes expressing MCT1 and/or NBC, and in water-injected oocytes, in salines buffered with 5 mM HEPES alone or with 5% CO2/10 mM HCO3 (pH 7.0). In MCT1 + NBC- but not in MCT1- or NBC-expressing oocytes, lactate activated a Na+- and HCO3-dependent membrane current, indicating that lactate/H+ cotransport via MCT1, due to the induced pH change, stimulates NBC activity. Lactate/H+ cotransport by MCT1 was increased about twofold when MCT1 was expressed together with NBC. Our results suggest that the facilitation of MCT1 transport activity is mainly due to the increase in apparent buffer capacity contributed by the NBC, and thereby suppresses the build-up of intracellular H+ during the influx of lactate/H+, which would reduce MCT1 activity. Hence these membrane transporters functionally cooperate and are able to increase ion/metabolite transport activity.  相似文献   

18.
Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cell-impermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein- and yellow fluorescent protein-tagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.  相似文献   

19.
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.  相似文献   

20.
Lactate is formed and utilized continuously under fully aerobic conditions. Lactate is oxidized actively at all times, especially during exercise. Family of monocarboxylate transport proteins (MCTs) that are differentially expressed in cells and tissues accomplishes the facilitated transport of lactate across membranes. Previously we reported that there is MCT1 in blood circulation. We also reported the pressure stress stimulated cell proliferation in aortic smooth muscle cells (HASMC). In this experiment we attempted to prove the existence of MCT1 in HASMC and to clarify the effect of pressure stress on MCT1 localization in HASMC. We determined succinate dehydrogenase (SDH) activity as a marker of energy metabolism in cells. SDH activity was increased by pressure stress. Lactate enhanced the SDH activity under pressure stress (160 mmHg for 3 h) as dose dependent manner. On the other hand, lactate excretion was suppressed by the addition of lactate. We could detect MCT1 in the cytosolic and the membrane fractions of HASMC. The pressure stress increased MCT1 in the membrane fraction in the presence of extracellular lactate. In summary, we proved the existence of MCT1 in HASMC. Pressure stress changed the localization of MCT1. The increased membranous MCT1 may transport lactate for energy metabolism in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号