首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flower morphology, nectary structure, nectar traits and rates of honeybee foraging on pepper plants were studied. The nectary appears as swellings on the basal part of the ovary. The nectariferous cells are smaller and denser than the neighbouring parenchyma. Stomata are present in the nectary epidermis, but do not appear on the other parts of the ovary epidermis. Seven pepper breeding lines were grown near a bee yard in Rehovot. Five to six fold differences in nectar volume were found between the extreme genotypes. Nectar volumes were higher during noon and afternoon hours, as compared with morning hours. High correlation coefficients between nectar volume and sugar concentration were found. These were significant for the four high nectar yielding genotypes, ranging between r = 0.65 to r = 0.94. Male-fertile flowers produced more nectar and higher sugar concentration than sterile ones. Skewed distribution was observed in nectar volume of F2 populations, but relatively low heritability values were calculated. Pepper nectar contains fructose and glucose only. The former occupies 52–82 % of the total sugar content. Pepper genotypes varied in frequency of honeybee visits and significant correlation between sugar quantity and number of honeybee visits per flower was evident. Fertile pepper flowers are not very attractive to honeybees and male-sterile flowers are even less so. The considerable variation in nectar characteristics can be exploited to increase attractiveness to honeybees, thus facilitating bee pollination in commercial production of F1hybrid seeds and improve fruit quality.  相似文献   

2.
Abstract. 1. This paper describes field observations on diel changes in the nectars of Crataegus, Tilia and Echium in relation to microclimate and insect visits.
2. Nectar concentration is highly correlated with ambient relative humidity, but the concentrative properties of the nectars differ from those of pure sugar solutions in ways that could be accounted for by microclimate or chemical effects.
3. The microclimate inside flowers may influence the rate of equilibration of nectar with the relative humidity of the air, or the equilibrium concentration itself.
4. The vapour pressure relationships of nectars may be influenced by the presence of components with low r/P values (that is, solutes in which solution show a relatively large lowering of vapour pressure, P , for a small change in refraction, r ). Such components might be released by micro-organisms in the nectar.
5. The quantity of sugar per flower depends on the relative rates of secretion and reabsorption, among other things. The flowers we studied showed evidence for morning and evening peaks of secretion, and in Crataegus substantial quantities of sugar were 'sequestered' around midday.
6. The pattern of visits by bumblebees to the flowers of Tilia and Echium can be related to the changing concentration of sugar in the nectar; caloric reward was probably not limiting for bumblebees visiting Tilia.  相似文献   

3.
Factors that contribute to variation in nectar sugar composition, nectar concentration and volume have been a central concern in studies of pollinator assemblages in angiosperms. In an effort to better understand the mechanisms underlying variation in nectar traits, we designed a series of experiments with flowering Helleborus foetidus individuals under natural and glasshouse conditions, to identify intraplant variation in nectar traits which depend on both intrinsic (sexual phases of individual flowers) and external (pollinator visits and plant growth conditions) factors. The results showed that nectar volume, sugar composition and concentration in Helleborus foetidus varied between floral sexual phases, environmental growing conditions, and levels of flower exposure to pollinator visits. Processes of mate-limitation in male reproductive success or pollen-limitation in female success, as well as flower protogyny and holocrine secretion of nectaries may be involved in nectar variability between floral phases. By comparing different environments we observed that nectar volume and concentration at the nectary and flower level were plastic traits sensitive to external conditions, emphasizing responsiveness to environmental changes and a consequent plasticity in nectar traits such as sugar concentration and volume. Nectar sugar composition did not respond to different growing conditions, suggesting that this is an intrinsic characteristic of this species, but pollinator exposure produced significant changes in the nectar of single nectaries, particularly in the sucrose-fructose balance. Future research on nectar ecology and nectar chemistry will need to consider that nectar traits exhibit different kinds of variation at the intraplant level and under different environmental conditions.  相似文献   

4.
 We studied nectar characteristics during the long flowering period (late June to end of November) in two populations of Linaria vulgaris (L.) Mill. spontaneously growing in the Botanical Gardens of Siena University (Tuscany, central Italy). The two populations were close to each other but they differed in blooming period. Plants of population 1 sprouted in May and flowered from the end of June to the end of September. Population 2 sprouted at the end of August and flowered from September to the end of November. Differences in nectar production and composition were found between and within populations. Flowers of population 1 produced a very small amount of nectar (not collectable) that remained on the nectary surface. The quantity of nectar increased in late September, when each flower produced 2–3 μl of nectar that flowed into the spur. Total sugar concentration was 175.8 mg/ml in young flowers. Flowers of population 2 produced 5–8 μl of nectar with a total sugar concentration of 200.9 mg/ml in the young stage. In bagged senescent flowers nectar volume decreased in both populations and nectar sugar concentration decreased down to 11.6 mg/ml in population 2 and increased up to 289.6 mg/ml in population 1. For both populations, the decrease in nectar volume in bagged flowers may have been due to water loss by evaporation. In population 2, the decrease in sugar concentration may have been due to nectar reabsorption that was never observed in population 1. Nectar variability is discussed in relation to insect visits and seed set. Received August 14, 2002; accepted December 17, 2002 Published online: June 2, 2003  相似文献   

5.
Floral nectar production quantity and changes in sugar concentration of the nectar ofRorippa indica were investigated. Flowers were sorted by age. The small flower size was a major factor for the use of BCG test paper in nectar sampling. In flowers of the youngest age category, the nectar volume increased toward the night and decreased during the day. The amount of sugar in the nectar decreased with flower age. The sugar concentration was lower at night than daytime. The variability and changes in nectar concentration enabled various species of insects to forage for nectar.  相似文献   

6.
An account is given of the flower of Echium plantagineum in south-eastern Australia, including stages and timing of flowering, behaviour of raindrops in the flower and aspects of floral microclimate. The concentration of nectar solutes varied with time and site, with means varying from 2 to 62% (as g sucrose/100 g solution). There was a significant negative correlation between nectar solute concentration and ambient relative humidity: the drier the air, the more concentrated the nectar. Rates of nectar secretion per flower varied with the bagging method, with long-term bagging reducing net secretion rates, possibly because of re-absorption. Rates varied with time, day and site, with a temporal pattern of change suggesting a link between rates of photosynthesis and secretion. Maximum nectar secretion rates in short-term bagging experiments were ca. 300 μg sugar/flower/hr (equivalent to > 2 mglflower/24 hr). Secretion rate was correlated with flower density. As flower density increased, secretion rate per flower decreased; rate of sugar production per unit area increased relatively more slowly than flower density. E. plantagineum could produce > 500 mg sugar/m2/day. Honeybees foraged on E. plantagineum only at ambient air temperatures above ca. 17°C unless irradiance exceeded ca. 750 W m-2. Foragers collected nectar or pollen alone, or both, with the type of visit significantly correlated with nectar solute concentration. Below 35% (as g sucrose/100 g solution) most bees took pollen only; above 40%, most took nectar. Mean standing crop of nectar was generally < 100 μg/flower when most bees were taking nectar, but could exceed 1000 μg/flower when bees were absent or foraging mainly for pollen. Honeybees did not always remove all nectar from flowers they probed. Reabsorption of residual nectar may augment the following day's secretion.  相似文献   

7.
Flower morphology, nectar features (chemical composition, production pattern, removal effects, and standing crop) and floral visitors are analysed in an Argentine population of Mandevilla pentlandiana. Nectar variability was examined during the lifetime of a single flower, over the course of the flowering season, and at different times of the day. Nectar is sucrose dominant. There were some variations in the proportions of sugar throughout both the flower lifespan and the flowering season. Flowers produced most nectar during bud-stage. Nectar secretion ceased near the end of the first day after flower opening. Nectar quantity varied as a function of flower age due to a combination of nectar secretion, cessation, and resorption periods. Overall sugar production was increased by nectar removal. Standing crop data showed that each open flower and inflorescence offers c. 2 and 11 mg of sugar respectively at any time of the flowering season. There was higher nectar availability at the beginning of the flowering season compared with the rest of the period. Flowers were visited by bumblebees, honeybees and hummingbirds. The greater the number of open flowers and the nectar variance, the more the mean reward quantity per flower available in the inflorescence. The sources of nectar variability in M. pentlandiana seem to be linked with both the female function (nectar resorption, nectar cessation) and the male one (early and comparatively large nectar availability, variation in nectar production as the flower ages, nectar secretion stimulation by nectar removals).  相似文献   

8.
Three southern Spanish populations of Helleborusfoetidus L. (Ranunculaceae) were sampled for nectar content in the absence of nectarivorous flower visitors. Nectar volume was measured in individual nectaries of flowers at the same stage in the anthesis cycle. Total nectar content per flower was extremely variable between plants within populations and between flowers within plants, but much less so between populations. Average sugar content per flower was roughly similar in the three populations sampled. High variances in nectar abundance occurred also among nectaries within the same flower. Heterogeneity in pollinator rewards thus occurs simultaneously at several spatial scales, namely between nectaries, between flowers and between plants. This implies a strong component of uncertainty to foraging pollinators, which may therefore tend to avoid Helleborus flowers.  相似文献   

9.
Bees collect food from flowers that differ in morphology, color, and scent. Nectar‐seeking foragers can rapidly associate a flower's cues with its profitability, measured as caloric value or ‘net energy gain,’ and generally develop preferences for more profitable species. If two flower types are equally easy to discover and feed from, differences in profitability will arise from differences in the volume or the sugar concentration of their nectar crops. Although there has been much study of how bees respond to one or the other of these two kinds of nectar variation, few studies have considered both at once. We presented free‐foraging bumblebees with two different types of equally rewarding artificial flowers. After a period of familiarization, we made one type more rewarding than the other by increasing its nectar concentration, volume, or both. Bees responded more rapidly to a change in the reward's sugar concentration than to a change in its volume, even if the profitability differences were approximately equal. Sucrose concentration differences (40% vs. 13%) caused bees to virtually abandon the more dilute flower type, whether both types offered the same volume (2 μl) or the less concentrated reward offered higher volume (7 μl vs. 0.85 μl). When the two types of flower differed only in nectar volume (7 μl vs. 0.85 μl), the less rewarding type continued to receive 22% of the visits. We propose three different hypotheses to explain the stronger response of the bees to changes in sugar concentration: (i) their response threshold to sucrose concentration might change; (ii) less time is needed to assess the concentration of a reward than its volume; and (iii) a smaller sample size may be needed for reliable estimation of profitability when flowers differ in concentration.  相似文献   

10.
BACKGROUND AND AIMS: Floral nectar concentration and chemical composition of 26 plant species native to the temperate forest of southern South America are reported and the relationships with the flower type are evaluated. METHODS: Nectar concentration was measured with a hand refractometer and sugar composition was analysed by gas-liquid chromatography. Plant species were classified into flower type categories based not only on floral features but also on data from the literature and field observations on their pollinators. KEY RESULTS: Most data on nectar are new reports at the generic and/or specific level. Plant species in which more than one population was studied showed significant among-population variation in nectar sugar concentration and composition. Results showed a weak relationship between nectar traits and flower type. Many species had nectar containing 50 % or more sucrose (17 of 26 species), independent of the main pollinator. CONCLUSIONS: Considering that (a) nectar characteristics did not show a clear association with different flower types or with plant taxonomic membership, and (b) different populations of the same species showed large variability in sugar composition, the results suggest that other factors (e.g. historical and environmental) could be involved in determining the sugar composition of the highly endemic plant species from this region.  相似文献   

11.
紫椴是东北东部地区原始针阔混交林中优势种或共优种之一,是优质的用材树种,更是重要的蜜源植物。本文研究长白山地区紫椴从单株到种群(林分)的泌蜜量,建立单株泌蜜量回归模型,并估计林分尺度泌蜜量,分析紫椴泌蜜量与胸高断面积以及材积或蓄积之间的关系。结果表明: 紫椴单花开花时间为6~8 d,泌蜜时间为5 d,平均每朵花总泌蜜量为8.58 mg。花蜜的糖浓度在一天中有变化,中午高于早晨和傍晚,平均糖浓度为37.7%。样地紫椴的平均胸径为40 cm,单株开花量为18万个,泌蜜量为1.56 kg(或纯糖0.588 kg)。每公顷紫椴的泌蜜量为79~147 kg(或0.0686~0.1285 m3,纯糖29.78~55.42 kg)。林分泌蜜量与总断面积以及蓄积量密切相关,可以利用森林资源调查数据估算紫椴泌蜜量。  相似文献   

12.
1. Peacock butterflies, Inachis io , were tested experimentally for their preferences for nectar sugars.
2. In tests with different plain sugar solutions (25%, weight to total weight) the butterflies strongly preferred sucrose and fructose over glucose. They also preferred sucrose over fructose.
3. In tests with mixed sugar solutions the butterflies clearly preferred both sucrose-dominant (sucrose : hexoses = 5 : 1) and balanced sugar solutions (sucrose : glucose : fructose = 1 : 1 : 1) over hexose-dominant sugar solutions (sucrose : hexoses = 1 : 5).
4. Females consumed significantly more of the balanced sugar solution than did males.
5. These results are discussed with respect to previous experiments on nectar preferences of butterflies, nectar sugar composition of butterfly-pollinated flowers, and flower preferences, physiological and reproductive aspects of butterflies.  相似文献   

13.
Tropaeolum majus (nasturtiums) were grown from seed in growthcabinets, under 380 and 750 ppmv CO2. Elevated CO2significantlyincreased nectar secretion rate, both in flowers milked of nectardaily and in once sampled, 3-d-old flowers. Elevated CO2didnot affect time to flowering, total number of flowers produced,pollen to ovule ratio, or the total or individual concentrationsof nectar amino acids. The dry weight and longevity of individualflowers was also unchanged. Nectar sugar content was unchangedby elevated CO2in a subset of flowers used to assess the 3-d-oldnectar volume. This subset did not show the same increase innectar volume under elevated CO2as the full set, resulting inthe concentration of sugars remaining unchanged. Overall, thequantity rather than the quality of the nectar changed underelevated CO2while flower characteristics remained constant,implying that the identity of pollinators may remain the samewhile foraging behaviour (e.g. number of visits per plant, distancetravelled) may change in the future. Copyright 1999 Annals ofBotany Company Tropaeolum majus, nasturtiums, elevated CO2, nectar, phenology, floral characteristics, amino acids, pollinator-plant interactions.  相似文献   

14.
In a controlled environment, we artificially induced drought during flowering of Epilobium angustifolium, an animal-pollinated plant. Leaf water potential (ψ(l)) and floral traits were monitored over a 12-d period of soil moisture depletion. Soil moisture depletion induced drought stress over time, as revealed by significant treatment × day interactions for predawn and midday ψ(l). Nectar volume and flower size showed significant negative responses to drought stress, but nectar sugar concentration did not vary between treatments. Floral traits were more buffered from drought than leaf water potentials. We used path analysis to examine direct and indirect effects of ψ(l) on floral traits for plants in well-watered (control) vs. drought treatments. According to the best-fit path models, midday ψ(l) has significant positive effects on flower size and nectar volume in both environments. However, for controls midday ψ(l) also had a significant negative effect on nectar sugar concentration. Results indicate that traits influencing floral attractiveness to pollinators in E. angustifolium vary with plant water status, such that pollinator-mediated selection could indirectly target physiological or biochemical controls on ψ(l). Moreover, under mesic conditions selection for greater nectar sugar reward may be constrained by the antagonistic effects of plant water status on nectar volume and sugar concentration.  相似文献   

15.
Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect‐pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variation within cultivated sunflowers and its effects on bee foraging behaviours. Over 2 years, we planted different sunflower inbred lines, including male‐fertile and male‐sterile lines, and measured nectar volume, nectar sugar concentration and composition, and corolla length. During bloom, we recorded visits by both managed honey bees and wild bees. We then examined consistency in relative nectar production by comparing field results to those from a greenhouse experiment. Sunflower inbred lines varied significantly in all floral traits, including the amount and composition of nectar sugars, and in corolla length. Both wild bee and honey bee visits significantly increased with nectar sugar amount and decreased with corolla length, but appeared unaffected by nectar sugar composition. While wild bees made more visits to sunflowers providing pollen (male‐fertile), honey bees preferred plants without pollen (male‐sterile). Differences in nectar quantity among greenhouse‐grown sunflower lines were similar to those measured in the field, and bumble bees preferentially visited lines with more nectar in greenhouse observations. Our results show that sunflowers with greater quantities of nectar sugar and shorter corollas receive greater pollination services from both managed and wild bees. Selecting for these traits could thus increase sunflower crop yields and provide greater floral resources for bees.  相似文献   

16.
Flower morphology, nectary structure, nectar features (chemical composition, secretion pattern, standing crop, removal effects) and flower visitors are analysed in an Argentinian population of Combretum fruticosum. The variability of these data was examined throughout the flower lifetime. Nectar is hexose dominant. Its chemical composition and concentration are constant for all flowering stageS. Nectar volume varies as a function of flower age due to a combination of nectar secretion, cessation and resorption periods. The overall sugar production is decreased by nectar removal. The plant is self-incompatible and xenogamouS. Only 16.2% of the flowers set seedS. Inflorescences with green flowers were exclusively visited by two hummingbird and three perching bird species which transfer the pollen. A clear link was observed among nectar production pattern, standing crop of nectar, and visitors' behaviour.  相似文献   

17.
We tested whether phylogeny, flower size and/or altitude were significant predictors of interspecific variation in nectar production of hummingbird-visited plants in an assembled database (289 species, in 22 orders, 56 families and 131 genera). Although the study is focused on hummingbird-pollinated plants (241 plant species), plants with different pollinator syndromes (48 species) are also included in the analyses. Nectar volume secreted in a given time period (usually 24 h) by a given flower, its sugar concentration and corolla length were compiled mainly from the literature. Altitude was also obtained from the original references. Sugar production was computed basically as the product of nectar secretion and sugar concentration, and expressed on a per 24-h basis. All nectar traits and corolla length (all log transformed), as well as altitude, showed statistically significant phylogenetic signal. Both nonphylogenetic and phylogenetically informed (independent contrasts) analyses indicated a highly significant positive correlation between corolla length and both nectar volume and sugar production. In addition, altitude (which is partially a surrogate for temperature) was significantly negatively correlated with both sugar concentration and production. Possible reasons for coadaptation of nectar production and sugar production with corolla length are discussed.  相似文献   

18.
This study describes nectar production patterns for Ipomopsis aggregata and discusses their potential adaptive and ecological significance. It also examines the influence of environmental and other factors on nectar production rate (NPR) and nectar sugar concentration. For I. aggregata there were no NPR differences with flower age. An hypothesis for the presence or absence of such differences is discussed. Ipomopsis aggregata has a relatively constant rate of nectar production during the day and production continues overnight but at a reduced rate. Newly opened flowers already have a sizeable accumulation of nectar. 24-hr nectar sugar production on overcast days was 62% of sunny day production. NPR values at the beginning of the flowering season were almost twice as great as those near the end but the sugar concentration did not change. Whether nectar was removed periodically (to simulate pollinator visits) or simply allowed to accumulate over 24 hr had no effect on total production. Nectar sugar concentration has a characteristic diurnal pattern: highest in the afternoon and lowest in the early morning, probably in response to diurnal changes in relative humidity. Sugar concentration was also lower on overcast days. These changes are not due to evaporative losses from the open end of the flower. However, evaporation did occur in flowers which had been punctured at the base of the corolla by nectar robbing bees. In general, the results of this study suggest caution in characterizing the NPR or sugar concentration of a species by making measurements at one point in time under one set of environmental conditions.  相似文献   

19.
Hummingbird flower mites are transported in the nares of hummingbirds and may compete with them by "robbing" nectar secreted by the host plants. We have shown that Tropicoseius sp. flower mites consume almost half the nectar secreted by the long-lived, protandrous flowers of Moussonia deppeana (Gesneriaceae) pollinated by Lampornis amethystinus (Trochilidae). In this paper, we ask whether mimicking nectar consumption of flower mites alters some aspects of hummingbird foraging patterns, and, if so, how this affects host plant seed production. We observed hummingbirds foraging on (a) plants in which nectar was removed from the flowers and then filled with a sugar solution to half the volume of nectar simulating nectar consumption by flower mites, and (b) plants where nectar was removed and then filled with the sugar solution up to normal nectar volumes. Flower mites were excluded from both groups of plants to control for mite activity. Hummingbirds made fewer but longer visits to plants and revisited more the flowers with nectar removal than those without the treatment. We then conducted a pollination experiment on pistillate flowers using a stuffed L. amethystinus hummingbird to evaluate the effect of pollination intensity (number of bill insertions into one flower) on seed production. Flowers with more insertions produced significantly more seeds than those flowers that received fewer insertions. We conclude that the simulation of nectar consumption by hummingbird flower mites can influence the behavior of the pollinator, and this may positively affect seed production.  相似文献   

20.
《Flora》2006,201(5):353-364
Nectar production and flower visitors of the night-flowering Saponaria officinalis L. (Caryophyllaceae) were studied in relation to the reproductive success. Nectar production was worthwhile for nocturnal flower visitors. Nectar standing crop was about 267 μg sugar per flower, and comparison of nectar offering of covered and freely exposed flowers revealed that main nectar secretion time is mainly during the night up to the morning hours. In both covered and freely exposed flowers nectar volumes decreased over the day. In covered flowers, nectar volume, sugar concentration, and sugar amount per flower increased up to the third day; in older flowers sugar secretion ceased. In 1996 Autographa gamma (Noctuidae) was the exclusive nocturnal flower visitor, but pollen transfer experiments proved that A. gamma (Noctuidae) is a very ineffective pollinator of S. officinalis. In 1999 up to 50% of the observed visitors were Sphingidae, which resulted in a significantly higher seed set. Fruit set was constantly high independent of pollinator availability. In the nectar manipulation experiments seed set was highest in non-emasculated flowers filled with unnaturally high concentrated sucrose solutions. Differences to seed set on stalks treated with a sucrose solution mimicking naturally concentrated nectar were significant. Lowest fruit and seed set were found on inflorescences with emasculated flowers filled with a sucrose solution mimicking naturally concentrated nectar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号