首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A series of pyridomorphinans possessing an aryl (10a-s) or heteroaryl (11a-h) substituent at the 5'-position of the pyridine ring of 17-cyclopropylmethyl-4,5 alpha-epoxypyrido[2',3':6,7]morphinan was synthesized and evaluated for binding and functional activity at the opioid delta, mu, and kappa receptors. All of these pyridomorphinans bound with higher affinity at the delta site than at mu or kappa sites. The binding data on isomeric compounds revealed that there exists greater bulk tolerance for substituents placed at the o-position of the phenyl ring than at m- or p-positions. Among the ligands examined, the 2-chlorophenyl (10l), 2-nitrophenyl (10n), 2-pyridyl (11a), and 4-quinolinyl (11g) compounds bound to the delta receptor with subnanomolar affinity. Compound 10c with the p-tolyl substituent displayed the highest mu/delta selectivity (ratio=42) whereas compound 10l with the 2-chlorophenyl substituent displayed the highest kappa/delta selectivity (ratio=23). At 10 microM concentration, the in vitro functional activity determined using [(35)S]GTP-gamma-S binding assays showed that all of the compounds were antagonists devoid of any significant agonist activity at the delta, mu, and kappa receptors. Antagonist potency determinations of three selected ligands revealed that the p-tolyl compound 10c is a potent delta selective antagonist. In the [(35)S]GTP-gamma-S assays this compound had a functional antagonist K(i) value of 0.2, 4.52, and 7.62 nM at the delta, mu, and kappa receptors, respectively. In the smooth muscle assays 10c displayed delta antagonist potency with a K(e) value of 0.88 nM. As an antagonist, it was 70-fold more potent at the delta receptors in the MVD than at the mu receptors in the GPI. The in vitro delta antagonist profile of this pyridomorphinan 10c resembles that of the widely used delta selective antagonist ligand naltrindole.  相似文献   

2.
Deng HB  Yu Y  Pak Y  O'Dowd BF  George SR  Surratt CK  Uhl GR  Wang JB 《Biochemistry》2000,39(18):5492-5499
Determining which domains and amino acid residues of the mu opioid receptor are phosphorylated is critical for understanding the mechanism of mu opioid receptor phosphorylation. The role of the C-terminus of the receptor was investigated by examining the C-terminally truncated or point-mutated mu opioid receptors in receptor phosphorylation and desensitization. Both wild-type and mutated receptors were stably expressed in Chinese hamster ovary (CHO) cells. The receptor expression was confirmed by receptor radioligand binding and immunoblottting. After exposure to 5 microM of DAMGO, phosphorylation of the C-terminally truncated receptor and the mutant receptor T394A was reduced to 40 and 10% of that of the wild-type receptor, respectively. Mutation effects on agonist-induced desensitization were studied using adenylyl cyclase inhibition assays. The C-terminally truncated receptor and mutant receptor T394A both showed complete loss of DAMGO-induced desensitization, while the mutant T/S-7A receptor only lost part of its ability to desensitize. Taken together, these results suggest that the C-terminus of the mu opioid receptor participates in receptor phosphorylation and desensitization with threonine 394, a crucial residue for both features. DAMGO-induced mu opioid receptor phosphorylation and desensitization are associated and appear to involve both the mu opioid receptor C-terminus and other domains of the receptor.  相似文献   

3.
Derivatives of N-(1-phenethyl-4-piperidyl)propanamides incorporating guanidinium and 2-aminoimidazolinium groups have been prepared by a synthetic approach involving first introduction of a spacer between the piperidine and the functional group by reductive amination of piperidinone. The formation of each of these functional groups was carried out using N-N'-di(tert-butoxycarbonyl)thiourea and 2-methylthioimidazolinium iodide, respectively. These structures have been designed to incorporate two pharmacologic goals into one entity. Radioligand binding assays have been used to study their affinity for opioid (mu, delta and kappa) and I2-imidazoline receptors. Two of them, 10 and 16, showed high affinity for mu opioid receptors and functionally they had moderate analgesic properties in the hot plate and writhing tests. The in vitro studies on guinea pig ileum (GPI) indicated that both compounds are mu opioid agonists. In what concerns I2-imidazoline receptor activity, these derivatives showed low affinity around 6 to 7 times less than idazoxan.  相似文献   

4.
Attachment of a glucose moiety to 6-beta-aminomorphine afforded compound 3, where the glucose moiety was linked to the C-6 nitrogen atom by a two-carbon bridge. The synthesis of 3 was accomplished in eight steps from 3-triisopropylsilyl-6-beta-aminomorphine and 2,3,4,6-tetra-O-benzyl-D-glucose. The C-glycoside 3 was prepared with the objective of examining a metabolically stable analogue of morphine-6-glucuronide and determining the potency and selectivity of opioid receptor binding. Competition binding assays showed that 3 bound to the mu opioid receptor with a Ki value of 3.5 nM. The C-glycoside 3 exhibited delta/mu and kappa/mu selectivity ratios of 76 and 165, respectively. The synthetic intermediate (i.e., benzyl precursor, compound 11) bound to the mu opioid receptor with a Ki value of 0.5 nM, was less selective for the mu opioid receptor. The [35S]GTPgammaS assay was used to evaluate the functional properties of compounds 3 and 11. Compound 3 was determined to be a full agonist at the mu opioid receptor, whereas compound 11 was found to be a partial agonist. Compound 3 was determined to be very stable in the presence of human liver S9, and rat and monkey liver microsomes: no detectable loss of 3 was observed up to 90 min. Compound 3 was also very stable at pH 2 and pH 7.4, suggesting that 3 possessed properties for sustained duration of action.  相似文献   

5.
There is evidence to indicate that opioid compounds with mixed mu agonist/delta antagonist properties are analgesics with low propensity to produce tolerance and physical dependence. A chimeric peptide containing the potent and selective mu agonist H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA) (Dmt=2',6'-dimethyltyrosine) and the potent and selective delta antagonist H-Tyr-TicPsi[CH2-NH]Cha-Phe-OH (TICP[Psi]) (Cha=cyclohexylalanine), connected 'tail-to-tail' via a short linker, was synthesized using a combination of solid-phase and solution techniques. The resulting peptide, H-Dmt-->D-Arg-->Phe-->Lys-NH-CH2-CH2-NH-Phe<--Cha[NH-CH2]PsiTic<--Tyr-H, showed the expected mu agonist/delta antagonist profile in the guinea-pig ileum and mouse vas deferens assays. Its mu and delta receptor binding affinities were in the low nanomolar range, as determined in rat brain membrane binding assays.  相似文献   

6.
Opioid peptides are the most effective drugs in controlling pain; their action is elicited by binding to specific membrane receptors. The gastrointestinal tract represents, after the nervous system, the site in which the opioid receptors are expressed at high levels. The opioid agonist morphine has a significant inhibitory effect on intestinal motility, this action is blocked by naloxone an opioid antagonist mainly active at mu and kappa receptors. In this study the presence of mu opioid receptor on rabbit jejunum was investigated by western blot. The effects of beta-endorphin, the endogenous opioid peptide with the highest affinity to the mu opioid receptor and those of naloxone on spontaneous rabbit jejunum contractions were evaluated. Beta-endorphin (10(-6) M) showed a relaxant effect on jejunum contractility while naloxone showed a dual effect inducing an increase of spontaneous contractility at low concentrations (10(-6) M, 10(-7) M, 10(-8) M) and a decrease when high concentrations (10(-3) M, 10(-4) M, 10(-5) M) were utilized. The obtained results demonstrate that mu opioid receptor is expressed in rabbit jejunum and suggest that this receptor may be involved in mediating the effects of both opioid agonist and antagonist on jejunum contractions.  相似文献   

7.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

8.
Mu opioid receptor antagonists have been applied to target a variety of diseases clinically. The current study is designed to explore the structure selectivity relationship (SSR) of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan (NAP), a lead compound identified as a selective mu opioid receptor antagonist based on the previous study. Among a series of NAP derivatives synthesized, compounds 6 (NMP) and 9 (NGP) maintained comparable binding affinity, selectivity and efficacy to the lead compound. Particularly, the mu opioid receptor selectivity over kappa opioid receptor of NGP was considerably enhanced compared to that of NAP. Overall, the preliminary SSR supported our original hypothesis that an alternate 'address' domain may exist in the mu opioid receptor, which favors the ligands carrying a hydrogen bond acceptor and an aromatic system to selectively recognize the mu opioid receptor.  相似文献   

9.
The cyclic enkephalin analog H-Tyr-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]NH(2) is a highly potent opioid agonist with IC(50)s of 35 pm and 19 pm in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays, respectively. The Phe(1)-analog of this peptide showed 370-fold and 6790-fold lower agonist potency in the GPI and MVD assays, respectively, indicating the importance of the Tyr(1) hydroxyl-group in the interaction with mu and delta opioid receptors. In the present study, the effect of various substituents (-NH(2), -NO(2), -CN, -CH(3), -COOH, -COCH(3), -CONH(2)) introduced in the para-position of the Phe(1)-residue of H-Phe-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]NH(2) on the in vitro opioid activity profile was examined. Most analogs showed enhanced mu and delta agonist potencies in the two bioassays, except for the Phe(pCOOH)(1)-analog, which was weakly active, probably as a consequence of the negative charge. The most potent compounds were the Phe(pCOH(3))(1)- and the Phe(pCONH(2))(1)-analogs. The latter compound showed subnanomolar mu and delta agonist potencies and represents the most potent enkephalin analog lacking the Tyr(1) hydroxyl-group reported to date. Taken together, these results indicate that various substituents introduced in the para-position of Phe(1) enhance opioid activity via hydrogen bonding or hydrophobic interactions with the receptor. Comparison with existing structure-activity relationship on phenolic hydroxyl replacements in morphinans indicates that these nonpeptide opiates and some of the cyclic enkephalin analogs described here may have different modes of binding to the receptor.  相似文献   

10.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

11.
We have screened a synthetic peptide combinatorial library composed of 2 x 10(7) beta-turn-constrained peptides in binding assays on four structurally related receptors, the human opioid receptors mu, delta, and kappa and the opioid receptor-like ORL1. Sixty-six individual peptides were synthesized from the primary screening and tested in the four receptor binding assays. Three peptides composed essentially of unnatural amino acids were found to show high affinity for human kappa-opioid receptor. Investigation of their activity in agonist-promoted stimulation of [(35)S]guanosine 5'-3-O-(thio)triphosphate binding assay revealed that we have identified the first inverse agonist as well as peptidic antagonists for kappa-receptors. To fine-tune the potency and selectivity of these kappa-peptides we replaced their turn-forming template by other turn mimetic molecules. This "turn-scan" process allowed the discovery of compounds with modified selectivity and activity profiles. One peptide displayed comparable affinity and partial agonist activity toward all four receptors. Interestingly, another peptide showed selectivity for the ORL1 receptor and displayed antagonist activity at ORL1 and agonist activity at opioid receptors. In conclusion, we have identified peptides that represent an entirely new class of ligands for opioid and ORL1 receptors and exhibit novel pharmacological activity. This study demonstrates that conformationally constrained peptide combinatorial libraries are a rich source of ligands that are more suitable for the design of nonpeptidal drugs.  相似文献   

12.
Mu opioid receptor antagonists have clinical utility and are important research tools. To develop non-peptide and highly selective mu opioid receptor antagonist, a series of 14-O-heterocyclic-substituted naltrexone derivatives were designed, synthesized, and evaluated. These compounds showed subnanomolar-to-nanomolar binding affinity for the mu opioid receptor. Among them, compound 1 exhibited the highest selectivity for the mu opioid receptor over the delta and kappa receptors. These results implicated an alternative ‘address’ domain in the extracellular loops of the mu opioid receptor.  相似文献   

13.
The 2',6'-dimethyl-l-tyrosine (Dmt) enhances receptor affinity, functional bioactivity and in vivo analgesia of opioid peptides. To further investigate its direct influence on these opioid parameters, we developed a series of compounds (H-Dmt-NH-X). Among them, H-Dmt-NH-CH(3) showed the highest affinity (K(i)mu=7.45 nM) equal to that of morphine, partial mu-opioid agonism (E(max)=66.6%) in vitro and a moderate antinociception in mice.  相似文献   

14.
Highly selective opioid receptor antagonists are essential pharmacological probes in opioid receptor structural characterization and opioid agonist functional studies. Currently, there is no highly selective, nonpeptidyl and reversible mu opioid receptor antagonist available. Among a series of naltrexamine derivatives that have been designed and synthesized, two compounds, NAP and NAQ, were previously identified as novel leads for this purpose based on their in vitro and in vivo pharmacological profiles. Both compounds displayed high binding affinity and selectivity to the mu opioid receptor. To further study the interaction of these two ligands with the three opioid receptors, the recently released opioid receptor crystal structures were employed in docking studies to further test our original hypothesis that the ligands recognize a unique ‘address’ domain in the mu opioid receptor involving Trp318 that facilitates their selectivity. These modeling results were supported by site-directed mutagenesis studies on the mu opioid receptor, where the mutants Y210A and W318A confirmed the role of the latter in binding. Such work not only enriched the ‘message–address’ concept, also facilitated our next generation ligand design and development.  相似文献   

15.
A series of substituted aryl amide derivatives of 6-naltrexamine, 3 designed to be metabolically stable were synthesized and used to characterize the structural requirements for their potency to binding and functional activity of human mu (μ), delta (δ) and kappa (κ) opioid and nociceptin (NOP) receptors. Binding assays showed that 410 had subnanomolar Ki values for μ and κ opioid receptors. Functional assays for stimulation of [35S]GTPγS binding showed that several compounds acted as partial or inverse agonists and antagonists of the μ and δ, κ opioid or NOP receptors. The compounds showed considerable stability in the presence of rat, mouse or human liver preparations and NADPH. The inhibitory activity on the functional activity of human cytochrome P450s was examined to determine any potential inhibition by 49. Only modest inhibition of CYP3A4, CYP2C9 and CYP2C19 was observed for a few of the analogs. As a representative example, radiolabeled 6 was examined in vivo and showed reasonable brain penetration. The inhibition of ethanol self-administration in rats trained to self-administer a 10% (w/v) ethanol solution, utilizing operant techniques showed 58 to have very potent efficacy (ED50 values 19–50 μg/kg).  相似文献   

16.
A modification of the message site in the skeleton of naltrexone was carried out to improve the potency and selectivity of the compound for an opioid receptor subtype. In the course of conversion, we synthesized 7-membered ring ether derivatives, which had an inserted OCH(2) group between 4- and 6-positions of morphinan skeleton. One of the 7-membered ring ether derivatives possessed more potent antagonistic activity than naltrexone for the mu opioid receptor. Another compound possessing 17-methyl group derived from noroxycodone may be a mu opioid receptor partial agonist and showed analgesic activity. We are currently examining the subtype selectivity of these compounds.  相似文献   

17.
Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.  相似文献   

18.
19.
The mouse gene encoding the mu opioid receptor, Oprm, undergoes extensive alternatively splicing, with 14 variants having been identified. However, only one variant of human mu opioid receptor gene (Oprm), MOR-1A, has been described. We now report two novel splice variants of the human Oprm gene, hMOR-1O and hMOR-1X. The full-length cDNAs of hMOR-1O and hMO-1X contained the same exons 1, 2, and 3 as the original hMOR-1, but with exon O or exon X as the alternative fourth exon, respectively. Northern blots revealed several bands with the exon O probe in both human neuroblastoma BE(2)C cells and human brain and a single band (5.5kb) with the exon X probe in selected human brain regions. When transfected into CHO cells, both variants showed high selectivity for mu opioids in binding assays. These two new human mu opioid receptors are the first human MOR-1 variants containing new exons and suggest that the complex splicing present in mice may extend to humans.  相似文献   

20.
New 4-anilidopiperidine analogues in which the phenethyl group of fentanyl was replaced by several aromatic ring-contained amino acids (or acids) were synthesized to study the biological effect of the substituents on mu and delta opioid receptor interactions. These analogues showed broad (47 nM-76 microM) but selective (up to 17-fold) binding affinities at the mu opioid receptor over the delta opioid receptor, as predicted from the message-address concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号