首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) filament, a specialized cytoskeletal structure required for flagellum adhesion and cell morphogenesis. TbSAS-4 is concentrated at the distal tip of the FAZ filament, and depletion of TbSAS-4 in the trypomastigote form disrupts the elongation of the new FAZ filament, generating cells with a shorter FAZ associated with a longer unattached flagellum and repositioned kinetoplast and basal body, reminiscent of epimastigote-like morphology. Further, we show that TbSAS-4 associates with six additional FAZ tip proteins, and depletion of TbSAS-4 disrupts the enrichment of these FAZ tip proteins at the new FAZ tip, suggesting a role of TbSAS-4 in maintaining the integrity of this FAZ tip protein complex. Together, these results uncover a novel function of TbSAS-4 in regulating the length of the FAZ filament to control basal body positioning and life cycle transitions in T. brucei.  相似文献   

2.
《Trends in parasitology》2023,39(5):332-344
A key morphological feature of kinetoplastid parasites is the position and length of flagellum attachment to the cell body. This lateral attachment is mediated by the flagellum attachment zone (FAZ), a large complex cytoskeletal structure, which is essential for parasite morphogenesis and pathogenicity. Despite the complexity of the FAZ only two transmembrane proteins, FLA1 and FLA1BP, are known to interact and connect the flagellum to the cell body. Across the different kinetoplastid species, each only has a single FLA/FLABP pair, except in Trypanosoma brucei and Trypanosoma congolense where there has been an expansion of these genes. Here, we focus on the selection pressure behind the evolution of the FLA/FLABP proteins and the likely impact this will have on host–parasite interactions.  相似文献   

3.
Vaughan S  Kohl L  Ngai I  Wheeler RJ  Gull K 《Protist》2008,159(1):127-136
The flagellum is attached along the length of the cell body in the protozoan parasite Trypanosoma brucei and is a defining morphological feature of this parasite. The flagellum attachment zone (FAZ) is a complex structure and has been characterised morphologically as comprising a FAZ filament structure and the specialised microtubule quartet (MtQ) plus the specialised areas of flagellum: plasma membrane attachment. Unfortunately, we have no information as to the molecular identity of the FAZ filament components. Here, by screening an expression library with the monoclonal antibody L3B2 which identifies the FAZ filament we identify a novel repeat containing protein FAZ1. It is kinetoplastid-specific and provides the first molecular component of the FAZ filament. Knockdown of FAZ1 by RNA interference (RNAi) results in the assembly of a compromised FAZ and defects in flagellum attachment and cytokinesis in procyclic trypanosomes. The complexity of FAZ structure and assembly is revealed by the use of other monoclonal antibody markers illustrating that FAZ1 is only one protein of a complex structure. The cytokinesis defects provide further evidence for the role of an attached flagellum in cellular morphogenesis in these trypanosomes.  相似文献   

4.
Trypanosoma brucei uses multiple mechanisms to evade detection by its insect and mammalian hosts. The flagellar pocket (FP) is the exclusive site of uptake from the environment in trypanosomes and shields receptors from exposure to the host. The FP neck is tightly associated with the flagellum via a series of cytoskeletal structures that include the hook complex (HC) and the centrin arm. These structures are implicated in facilitating macromolecule entry into the FP and nucleating the flagellum attachment zone (FAZ), which adheres the flagellum to the cell surface. TbSmee1 (Tb927.10.8820) is a component of the HC and a putative substrate of polo‐like kinase (TbPLK), which is essential for centrin arm and FAZ duplication. We show that depletion of TbSmee1 in the insect‐resident (procyclic) form of the parasite causes a 40% growth decrease and the appearance of multinucleated cells that result from defective cytokinesis. Cells lacking TbSmee1 contain HCs with aberrant morphology and show delayed uptake of both fluid‐phase and membrane markers. TbPLK localization to the tip of the new FAZ is also blocked. These results argue that TbSmee1 is necessary for maintaining HC morphology, which is important for the parasite's ability to take up molecules from its environment.  相似文献   

5.
Flagella are sophisticated organelles found in many eukaryotic microbes where they perform functions related to motility, signal detection, or cell morphogenesis. In many cases, several flagella are present per cell, and these can have a different composition, length, age, or function, raising the question of how this is managed. When the flagella are equivalent and constructed simultaneously such as in Chlamydomonas or Naegleria, we propose an equal access model where molecular components have free access to each organelle. By contrast, Trypanosoma and Leishmania contain temporally distinct organelles and elongate a new flagellum whilst maintaining the existing one. The equal access model could function providing that the mature flagellum is “locked” so that it can no longer be elongated or shortened. Alternatively, access of flagellar components could be restricted at the level of the basal body, the transition zone, or the loading on intraflagellar transport trains. In organisms that contains flagella of different age and composition such as Giardia, a temporal dimension is necessary, with the production of protein components of flagella spreading over one or more cell cycles. In the future, deciphering the molecular mechanisms involved in these processes should reveal new insights in flagellum assembly and function.  相似文献   

6.
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the 'FAZ ER'. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.  相似文献   

7.
Numerous eukaryote genome projects have uncovered a variety of kinesins of unknown function. The kinesin 9 family is limited to flagellated species. Our phylogenetic experiments revealed two subfamilies: KIF9A (including Chlamydomonas reinhardtii KLP1) and KIF9B (including human KIF6). The function of KIF9A and KIF9B was investigated in the protist Trypanosoma brucei that possesses a single motile flagellum. KIF9A and KIF9B are strongly associated with the cytoskeleton and are required for motility. KIF9A is localized exclusively in the axoneme, and its depletion leads to altered motility without visible structural modifications. KIF9B is found in both the axoneme and the basal body, and is essential for the assembly of the paraflagellar rod (PFR), a large extra-axonemal structure. In the absence of KIF9B, cells grow abnormal flagella with excessively large blocks of PFR-like material that alternate with regions where only the axoneme is present. The functional diversity of the kinesin 9 family illustrates the capacity for adaptation of organisms to suit specific cytoskeletal requirements.  相似文献   

8.
Li Z  Wang CC 《Eukaryotic cell》2008,7(11):1941-1950
Kinetoplastid membrane protein 11 (KMP-11) has been identified as a flagellar protein and is conserved among kinetoplastid parasites, but its potential function remains unknown. In a recent study, we identified KMP-11 as a microtubule-bound protein localizing to the flagellum as well as the basal body in both procyclic and bloodstream forms of Trypanosoma brucei (Z. Li, J. H. Lee, F. Chu, A. L. Burlingame, A. Gunzl, and C. C. Wang, PLoS One 3:e2354, 2008). Silencing of KMP-11 by RNA interference inhibited basal body segregation and cytokinesis in both forms and resulted in multiple nuclei of various sizes, indicating a continuous, albeit somewhat defective, nuclear division while cell division was blocked. KMP-11 knockdown in the procyclic form led to severely compromised formation of the new flagellum attachment zone (FAZ) and detachment of the newly synthesized flagellum. However, a similar phenotype was not observed in the bloodstream form depleted of KMP-11. Thus, KMP-11 is a flagellar protein playing critical roles in regulating cytokinesis in both forms of the trypanosomes. Its distinct roles in regulating FAZ formation in the two forms may provide a clue to the different mechanisms of cytokinetic initiation in procyclic and bloodstream trypanosomes.  相似文献   

9.
To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum.  相似文献   

10.
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.  相似文献   

11.
Trypanosomes possess a single flagellum that is attached to their cell body via the flagellum attachment zone (FAZ). The FAZ is composed of two structures: a cytoplasmic filament complex and four microtubules situated next to it. There is a complex transmembrane crosslinking of this FAZ to the paraflagellar rod (PFR) and axoneme within the flagellum. We have partially purified the FAZ complex and have produced monoclonal antibodies both against the FAZ and the paraflagellar rod. The two antibodies against the FAZ (L3B2 and L6B3) recognise the cytoplasmic filament in immunofluorescence and in immunoelectron microscopy. On western blot, they detect a doublet of high molecular weight (M(r) 200,000). Two anti-PFR antibodies (L13D6 and L8C4) recognise the paraflagellar rod in immunofluorescence, but show a difference on Western blot: L13D6 recognises both major PFR proteins, whereas L8C4 is specific for only one of them. Using these new antibodies we have shown that although the growth of both cytoplasmic FAZ filament and external PFR are related, their growth initiates at different time points during the cell cycle and the two structures elongate at distinct rates.  相似文献   

12.
Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in the flagellum composition between these two parasite lifestages. Shuttling of Alba-domain proteins between the cytoplasm and the nucleolus or the flagellum throughout the parasite life cycle suggests that these RNA-binding proteins participate in several distinct regulatory pathways controlling developmental gene expression in Leishmania.  相似文献   

13.
Dyneins are high molecular weight microtubule based motor proteins responsible for beating of the flagellum. The flagellum is important for the viability of trypanosomes like Leishmania. However, very little is known about dynein and its role in flagellar motility in such trypanosomatid species. Here, we have identified genes in five species of Leishmania that code for outer-arm dynein (OAD) heavy chains α and β, and inner-arm dynein (IAD) heavy chains 1α and 1β using BLAST and MSA. Our sequence analysis indicates that unlike the three-headed outer-arm dyneins of Chlamydomonas and Tetrahymena, the outer-arm dyneins of the genus Leishmania are two-headed, lacking the γ chain like that of metazoans. N-terminal sequence analysis revealed a conserved IQ-like calmodulin binding motif in the outer-arm α and inner-arm 1α dynein heavy chain in the five species of Leishmania similar to Chlamydomonas reinhardtii outer-arm γ. It was predicted that both motifs were incapable of binding calmodulin. Phosphorylation site prediction revealed conserved serine and threonine residues in outer-arm dynein α and inner-arm 1α as putative phosphorylation sites exclusive to Leishmania but not in Trypanosoma brucei suggesting that regulation of dynein activity might be via phosphorylation of these IQ-like motifs in Leishmania sp.  相似文献   

14.
Cilia and flagella are complex, microtubule (MT)-filled cell organelles of which the structure is evolutionarily conserved from protistan cells to mammalian sperm and the size is regulated. The best-established model for flagellar length (FL) control is set by the balance of continuous MT assembly and disassembly occurring at the flagellar tip. Because steady-state assembly of tubulin onto the distal end of the flagellum requires intraflagellar transport (IFT)--a bidirectional movement of large protein complexes that occurs within the flagellum--FL control must rely upon the regulation of IFT. This does not preclude that other pathways might "directly" affect MT assembly and disassembly. Now, among the superfamily of kinesins, family-13 (MCAK/KIF2) members exhibit a MT-depolymerizing activity responsible for their essential functions in mitosis. Here we present a novel family-13 kinesin from the flagellated protozoan parasite Leishmania major, that localizes essentially to the flagellum, and whose overexpression produces flagellar shortening and knockdown yields long flagella. Using negative mutants, we demonstrate that this phenotype is linked with the MT-binding and -depolymerizing activity of this kinesin. This is the first report of an effector protein involved in FL control through a direct action in MT dynamics, thus this finding complements the assembly-disassembly model.  相似文献   

15.
The control of the protozoan parasite Leishmania relies on few drugs with unknown cellular targets and unclear mode of action. Several antileishmanials, however, were shown to induce apoptosis in Leishmania and this death mechanism was further studied in drug-sensitive and drug-resistant Leishmania infantum. In sensitive parasites, antimonials (SbIII), miltefosine (MF) and amphotericin B (AMB), but not paromomycin (PARO), triggered apoptotic cell death associated with reactive oxygen species (ROS). In contrast, Leishmania mutants resistant to SbIII, MF or AMB not only failed to undergo apoptosis following exposure to their respective drugs, but also were more tolerant towards apoptosis induced by other antileishmanials, provided that these killed Leishmania via ROS production. Such tolerance favored the rapid acquisition of multidrug resistance. PARO killed Leishmania in a non-apoptotic manner and failed to produce ROS. PARO resistance neither protected against drug-induced apoptosis nor provided an increased rate of acquisition of resistance to other antileishmanials. However, the PARO-resistant mutant, but not SbIII-, MF- or AMB-resistant mutants, became rapidly cross-resistant to methotrexate, a model drug also not producing ROS. Our results therefore link the mode of killing of drugs to tolerance to cell death and to a facilitated emergence of multidrug resistance. These findings may have fundamental implications in the field of chemotherapeutic interventions.  相似文献   

16.
Flagella and cilia are elaborate cytoskeletal structures conserved from protists to mammals, where they fulfil functions related to motility or sensitivity. We demonstrate a novel role for the flagellum in the control of cell morphogenesis and division of Trypanosoma brucei. To investigate flagellum functions, its formation was perturbed by inducible RNA interference silencing of components required for intraflagellar transport (IFT), a dynamic process necessary for flagellum assembly. First, we show that down-regulation of IFT leads to assembly of a shorter flagellum. Strikingly, cells with a shorter flagellum are smaller, with a direct correlation between flagellum length and cell size. Detailed morphogenetic analysis reveals that the tip of the new flagellum defines the point where cytokinesis is initiated. Furthermore, when new flagellum formation is completely blocked, non-flagellated cells are very short, lose their normal shape and polarity and fail to undergo cytokinesis. We show that flagellum elongation controls formation of cytoskeletal structures present in the cell body that act as molecular organisers of the cell.  相似文献   

17.
The cellular slime mold Dictyostelium discoideum is an attractive system for studying the roles of microtubule-based motility in cell development and differentiation. In this work, we report the first molecular characterization of kinesin-related proteins (KRPs) in Dictyostelium. A PCR-based strategy was used to isolate DNA fragments encoding six KRPs, several of which are induced during the developmental program that is initiated by starvation. The complete sequence of one such developmentally regulated KRP (designated K7) was determined and found to be a novel member of the kinesin superfamily. The motor domain of K7 is most similar to that of conventional kinesin, but unlike conventional kinesin, K7 is not predicted to have an extensive α-helical coiled-coil domain. The nonmotor domain is unusual and is rich in Asn, Gln, and Thr residues; similar sequences are found in other developmentally regulated genes in Dictyostelium. K7, expressed in Escherichia coli, supports plus end–directed microtubule motility in vitro at a speed of 0.14 μm/s, indicating that it is a bona fide motor protein. The K7 motor is found only in developing cells and reaches a peak level of expression between 12 and 16 h after starvation. By immunofluorescence microscopy, K7 localizes to a membranous perinuclear structure. To examine K7 function, we prepared a null cell line but found that these cells show no gross developmental abnormalities. However, when cultivated in the presence of wild-type cells, the K7-null cells are mostly absent from the prestalk zone of the slug. This result suggests that in a population composed largely of wild-type cells, the absence of the K7 motor protein interferes either with the ability of the cells to localize to the prestalk zone or to differentiate into prestalk cells.  相似文献   

18.
Sun L  Wang CC 《PloS one》2011,6(11):e27303
The polo-like kinase in the deep branching eukaryote Trypanosoma brucei (TbPlk) has many unique features. Unlike all the other polo-like kinases known to associate with the nucleus and controlling both mitosis and cytokinesis, TbPlk localizes to the flagellum attachment zone (FAZ) and regulates only cytokinesis in T. brucei. TbPlk was, however, previously found capable of complementing all the multiple Plk (Cdc5) functions in Saccharomyces cerevisiae, indicating that it has acquired all the functions of Cdc5. In the present study, Cdc5 tagged with an enhanced yellow fluorescence protein (EYFP) localized exclusively in the FAZ of T. brucei, suggesting that the unusual localization and limited function of TbPlk are probably attributed to the particular environment in T. brucei cells. Structural basis for the FAZ localization of TbPlk was further investigated with TbPlk and TbPlk mutants tagged with EYFP and expressed in T. brucei. The results indicated that a kinase-inactive mutant N169A and a TbPlk mutant with the entire kinase domain (KD) deleted both localized to the FAZ. Substantial association with FAZ was also maintained when one of the two polo-boxes (PB1 or 2) or the linker region between them was deleted from TbPlk. But a deletion of both polo-boxes led to a complete exclusion of the protein from FAZ. All the deletion mutants retained the kinase activity, further indicating that the TbPlk kinase function does not play a role for FAZ localization. The two polo boxes in TbPlk are most likely instrumental in localizing the protein to FAZ through potential interactions with certain FAZ structural component(s). A putative cryptic bipartite nuclear targeting signal was identified in TbPlk, which was capable of directing TbPlk into the nucleus when either the kinase activity was lost or the PB1 was deleted from the protein.  相似文献   

19.
A Golgi-associated bi-lobed structure was previously found to be important for Golgi duplication and cell division in Trypanosoma brucei. To further understand its functions, comparative proteomics was performed on extracted flagellar complexes (including the flagellum and flagellum-associated structures such as the basal bodies and the bi-lobe) and purified flagella to identify new bi-lobe proteins. A leucine-rich repeats containing protein, TbLRRP1, was characterized as a new bi-lobe component. The anterior part of the TbLRRP1-labeled bi-lobe is adjacent to the single Golgi apparatus, and the posterior side is tightly associated with the flagellar pocket collar marked by TbBILBO1. Inducible depletion of TbLRRP1 by RNA interference inhibited duplication of the bi-lobe as well as the adjacent Golgi apparatus and flagellar pocket collar. Formation of a new flagellum attachment zone and subsequent cell division were also inhibited, suggesting a central role of bi-lobe in Golgi, flagellar pocket collar and flagellum attachment zone biogenesis.  相似文献   

20.
Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.Cilia and flagella are prominent organelles of many eukaryotic cells. The names “cilia” and “flagella” are often related to historical reasons but they correspond to the same entity: a cylindrical organelle surrounded by a membrane and composed of an axoneme, a set of nine doublet microtubules originating from the basal body. Motile cilia usually contain a central pair of single microtubules and various substructures involved in the generation or the control of flagellar or ciliary beating, such as dynein arms, radial spokes, or central pair projections. This structural organization is remarkably well conserved across evolution, being encountered from protists to mammals (1). The conservation is also found at the molecular level as observed by comparative genomics between species with or without cilia and flagella (2, 3). Nevertheless, proteomic analysis revealed that in addition to the common core, many components unique to each group of eukaryotes are also present (48).The cilium represents a separate compartment from the cell body and does not contain any ribosomes or vesicles of any kind. The base of cilia and flagella contains projections that link each microtubule triplet of the basal body to the flagellum membrane (9). This region has been proposed to act as a barrier restricting entry of cytoplasmic proteins and ensuring retention of flagellum matrix elements (10). The transition zone is found in-between this area and the axoneme and contains several complexes of proteins (many of whom are mutated in the case of ciliopathies, genetic diseases affecting cilia function and/or formation) that contribute to the definition of the ciliary compartment (11, 12). Recent data showed that dextrans of low molecular weight are free to diffuse in the ciliary compartment as well as in the nucleus, whereas molecules of higher size (30 kDa or above) could not access these organelles. This led to the finding that a structure equivalent to the nucleopore complex is localized at the basal body area and could control access to the ciliary compartment (13). Finally, a septin barrier appears to be present close to the basis of the cilium and could control the trafficking of specific ciliary membrane proteins (14). The existence of a specific compartment comprising a large number of skeletal, matrix, and membrane proteins raises the issue of its internal organization. Key questions include the distribution of proteins, the mechanisms involved in specific distribution and the turnover during the life of the organelle.We selected to address these basic phenomena in the protist Trypanosoma brucei, well known as the etiological agent of sleeping sickness in Africa, but that is also an amenable model for cilia studies (15). It possesses a single flagellum that contains a typical 9 + 2 axoneme emerging from a depression of the cell surface called the flagellar pocket. This structure can be related to the ciliary pocket found at the base of different types of cilia in mammalian cells (16, 17). The axoneme is flanked by a lattice-like structure called the paraflagellar rod (PFR)1 that is present as soon as the flagellum emerges from the pocket and runs to its distal end (18). The PFR contains at least 30 different proteins (19) and has been proposed to contribute to cell motility because its ablation results in cell paralysis in T. brucei (20) and in the related parasite Leishmania mexicana (21). The flagellum is attached to the cell body for most of its length, with the PFR lying close to the cell body side where a specific cytoskeletal structure termed the flagellum attachment zone (FAZ) is found (22). It is made of a unique filament composed of trypanosome-specific proteins (23, 24) and of four specialized microtubules flanked by the smooth endoplasmic reticulum (25). The flagellum plays key cellular functions as it drives cell motility (4, 26, 27), controls cell morphogenesis (28) and is responsible for parasite attachment during invasion of the salivary glands in the tsetse fly (29). Moreover, it could perform sensory functions and contribute to detection of the environment during the parasite life cycle (30). Recent data revealed the essential role of flagellum beating during fly invasion (31) but surprisingly reduction of forward motility did not affect infectivity in a mouse model (32).Purification of intact flagella from trypanosomes is a challenging task because of the adhesion to the cell body. Detergent and high-salt treatment have been used to efficiently purify the skeletal fraction of the flagellum that contains the axoneme, the PFR, and the basal body but that also includes the kinetoplast (mitochondrial genome), the FAZ, and the flagellar pocket collar (4, 33, 34). However, membrane and matrix components are totally lost during this procedure. For example, none of the intraflagellar transport (IFT) proteins that normally traffic in the flagellum matrix along peripheral microtubules (35) could be detected in samples purified by this procedure (4). We therefore decided to purify intact flagella by using a mutant strain called FLA1RNAi where expression of an mRNA encoding a protein essential for flagellum attachment to the cell body (36) can be conditionally knocked-down by RNAi (37). FLA1RNAi cells exhibit detached flagella from the main cell body, with the exception of the anchoring point at the basal body (37). By mechanical shearing, we found out that flagella could be severed from the cell body while preserving their membrane and their matrix elements. After purification, flagellar fractions were exhaustively characterized at the level of light and electron microscopy and their content was determined by mass spectrometry that confirmed the presence of the majority of known flagellar markers and revealed novel flagellar components. Three previously characterized proteins (the arginine kinase and two 14-3-3 proteins) and 10 hypothetical proteins were investigated in detail. Out of these 13 candidate proteins, 10 turned out to be associated to the flagellum whereas the others could not be detected experimentally. The novel ones were termed FLAM, for Flagellum Members. Remarkably, these proteins showed very specific location patterns within the flagellum including the membrane, the distal tip of the axoneme or the first proximal half of the axoneme, and displayed unexpected variations in their turnover rate. Overall, we revealed the existence of multiple subdomains within the flagellum with very specific dynamics, further demonstrating the highly sophisticated organization of the organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号