首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The non‐receptor tyrosine kinase c‐Src, hereafter referred to as Src, is overexpressed or activated in multiple human malignancies. There has been much speculation about the functional role of Src in colorectal cancer (CRC), with Src amplification and potential activating mutations in up to 20% of the human tumours, although this has never been addressed due to multiple redundant family members. Here, we have used the adult Drosophila and mouse intestinal epithelium as paradigms to define a role for Src during tissue homeostasis, damage‐induced regeneration and hyperplasia. Through genetic gain and loss of function experiments, we demonstrate that Src is necessary and sufficient to drive intestinal stem cell (ISC) proliferation during tissue self‐renewal, regeneration and tumourigenesis. Surprisingly, Src plays a non‐redundant role in the mouse intestine, which cannot be substituted by the other family kinases Fyn and Yes. Mechanistically, we show that Src drives ISC proliferation through upregulation of EGFR and activation of Ras/MAPK and Stat3 signalling. Therefore, we demonstrate a novel essential role for Src in intestinal stem/progenitor cell proliferation and tumourigenesis initiation in vivo.  相似文献   

2.
Low‐density lipoprotein receptor‐related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt‐induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture‐based cDNA expression screen, we identified the non‐receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6‐Wnt signalling. Epistatically, they function upstream of β‐catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer‐induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de‐represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over‐activation of Wnt signalling at the level of the Wnt receptor, LRP6.  相似文献   

3.
顾远  张雷  余发星 《遗传》2017,39(7):588-596
肠道是人体最重要的消化器官之一,急慢性肠炎、肠道肿瘤等肠道疾病严重威胁着人类的健康,因此对肠道生理及病理机制的研究具有重要的科学意义及临床价值。Hippo信号通路在细胞增殖与分化、组织损伤再生、肿瘤发生和发展过程中起重要作用,参与肠道中众多生理及病理进程的调控。本文结合近年来肠道相关Hippo信号通路的研究进展,对该领域的前沿信息进行概括总结,重点阐述了Hippo信号在肠稳态、再生与癌变过程中的作用,并在此基础上展望了肠道中Hippo信号通路研究的前景及潜在的临床价值。  相似文献   

4.
Fracture repair is a complex regenerative process initiated in response to injury, resulting in optimal restoration of skeletal function. Although histology characteristics at various phases of fracture repair are clear and well established, much remains to be understood about the process of bone healing, particularly at the molecular signaling level. During the past decade, secreted signaling molecules of the Wnt family have been widely investigated and found to play a central role in controlling embryonic development processes. Wnt signaling pathway also plays a pivotal role in the regulation of bone mass. Recent published data reveal that Wnt signaling pathway is activated during postnatal bone regenerative events, such as ectopic endochondral bone formation and fracture repair. Dysregulation of this pathway greatly inhibits bone formation and healing process. Interestingly, activation of Wnt pathway has potential to improve bone healing, but only utilized after mesenchymal cells have become committed to the osteoblast lineage. These advances suggest an essential role of Wnt pathway in bone regeneration. J. Cell. Biochem. 106: 353–362, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Wnt signaling in retinal stem cells and regeneration   总被引:1,自引:0,他引:1  
  相似文献   

6.
In the developing embryo,nascent axons navigate towards their specific targets to establish the intricate network of axonal connections linking neurons within the mature nervous system.Molecular navigational systems comprising repulsive and attractive guidance cues form chemotactic gradients along the pathway of the exploring growth cone.Axon-bound receptors detect these gradients and determine the trajectory of the migrating growth cone.In contrast to their benevolent role in the developing nervous system,repulsive guidance receptors are detrimental to the axon’s ability to regenerate after injury in the adult.In this review we explore the essential and beneficial role played by the chemorepulsive Wnt receptor,Ryk/Derailed in axon navigation in the embryonic nervous system(the Yin function).Specifically,we focus on the role of Wnt5a/Rykmediated guidance in the establishment of two major axon tracts in the mammalian central nervous system,the corticospinal tract and the corpus callosum.Recent studies have also identified Ryk as a major suppressor of axonal regeneration after spinal cord injury.Thus,we also discuss this opposing aspect of Ryk function in axonal regeneration where its activity is a major impediment to axon regrowth(the Yang function).  相似文献   

7.
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.  相似文献   

8.
Recently, the incidence of bile duct‐related diseases continues to increase, and there is no effective drug treatment except liver transplantation. However, due to the limited liver source and expensive donations, clinical application is often limited. Although current studies have shown that ductular reaction cells (DRCs) reside in the vicinity of peribiliary glands can differentiate into cholangiocytes and would be an effective alternative to liver transplantation, the role and mechanism of DRCs in cholangiole physiology and bile duct injury remain unclear. A 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC)‐enriched diet was used to stimulate DRCs proliferation. Our research suggests DRCs are a type of intermediate stem cells with proliferative potential that exist in the bile duct injury. Meanwhile, DRCs have bidirectional differentiation potential, which can differentiate into hepatocytes and cholangiocytes. Furthermore, we found DRCs highly express Lgr5, and Lgr5 is a molecular marker for neonatal DRCs (P < .05). Finally, we confirmed Wnt/β‐catenin signalling achieves bile duct regeneration by regulating the expression of Lgr5 genes in DRCs (P < .05). We described the regenerative potential of DRCs and reveal opportunities and source for the treatment of cholestatic liver diseases.  相似文献   

9.
范晴晴  孟飞龙  房冉  李高鹏  赵小立 《遗传》2017,39(10):897-907
Wnt信号通路在生物发育和维持内环境稳态过程中起着重要作用。Wnt配体通过与Frizzle受体结合参与体轴的形成、细胞分化和细胞命运决定等生命活动。在小鼠内耳发育过程中,Wnt信号通路扮演了重要角色:在内耳发育早期阶段,参与听基板的特化和听泡的形成;在内耳发育后期阶段,调控毛细胞分化及毛细胞纤毛束的定向。本文综述了Wnt信号通路在内耳毛细胞发育分化及再生过程中的研究进展,以期为从事相关领域的科研人员提供参考。  相似文献   

10.
《Current biology : CB》2022,32(24):5262-5273.e2
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

11.
《Cell Stem Cell》2023,30(2):188-206.e6
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   

12.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

13.
Acute or repetitive exposure to ultraviolet (UV) cause disruptions to the skin barrier and subsequent inflammatory skin disease. 4‐phenylpyridine (4‐PP) is a constituent of Brassica campestris L. ssp. Pekinensis and its effect on skin inflammation and molecular target remain unclear. The purpose of this study is to confirm the anti‐inflammatory efficacy of 4‐PP on UVB‐induced skin inflammation in human keratinocytes HaCaT and mouse skin and validation of its molecular target. 4‐PP also attenuated UVB‐induced phosphorylation of p38/mitogen‐activated protein kinase kinase (MKK) 3/6, c‐Jun N‐terminal kinase 1/2, MKK 4/7, extracellular‐signal‐regulated kinase 1/2, mitogen‐activated protein kinase 1/2. Additionally, 4‐PP inhibited UVB‐induced phosphorylation of epidermal growth factor receptor (EGFR) Y1068, Y1045 and 854 residues but not the proto‐oncogene tyrosine‐protein kinase c‐Src. Drug affinity responsive target stability assay revealed that 4‐PP directly binds to c‐Src and inhibits pronase c‐proteolysis. Knockdown of c‐Src inhibited UVB‐induced COX‐2 expression and phosphorylation of MAPKs and EGFR in HaCaT cells. Dorsal treatment of 4‐PP prevented UVB (0.5 J/cm2)‐induced skin thickness, phosphorylation of EGFR and COX‐2 expression in mouse skin. Our findings suggest that 4‐PP can be used as anti‐inflammatory agent with an effect of skin inflammation by inhibiting the COX‐2 expression via suppressing the c‐Src/EGFR/MAPKs signalling pathway.  相似文献   

14.
Total regeneration of experimentally excised lens from the dorsal part of the iris-pigmented epithelium of newts has been a key model of tissue regeneration via cells originating from a foreign tissue. Due to the strict spatial restriction of the lens origin in the newt iris, it has often been assumed that only the dorsal iris cells are endowed with an intrinsic potential to give rise to lens tissues. However, our reinvestigation of the process revealed completely different mechanisms underlying lens regeneration and its spatial restriction, comprising the following two steps: (i) Fibroblast growth factor (FGF) 2-dependent proliferation of iris-pigmented epithelium and activation of early lens genes ( Pax6, Sox2, MafB ) over the entire circumference of the iris; and (ii) dorsal iris-restricted activation of the canonical Wnt signals (involving Wnt2b and Frizzeld4) that leads to localized expression of late lens genes ( Prox1, Sox1, β-crystallin ). Injection of FGF2 into normal eyes specifically elicited the second lens development from the dorsal iris, and the administration of recombinant Wnt3a to the cultured iris-pigmented epithelium caused even ventral iris-derived lens development. Thus, it is concluded that the regulation of FGF2 and Wnt signals is a determinative of the iris-derived lens regeneration in the newt eye.  相似文献   

15.
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)‐Ras signaling. We also show that ectopic activation of EGFR‐Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR‐Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates.  相似文献   

16.
Aging and carcinogenesis coincide with the accumulation of DNA damage and mutations in stem and progenitor cells. Molecular mechanisms that influence responses of stem and progenitor cells to DNA damage remain to be delineated. Here, we show that niche positioning and Wnt signaling activity modulate the sensitivity of intestinal stem and progenitor cells (ISPCs) to DNA damage. ISPCs at the crypt bottom with high Wnt/β‐catenin activity are more sensitive to DNA damage compared to ISPCs in position 4 with low Wnt activity. These differences are not induced by differences in cell cycle activity but relate to DNA damage‐dependent activation of Wnt signaling, which in turn amplifies DNA damage checkpoint activation. The study shows that instructed enhancement of Wnt signaling increases radio‐sensitivity of ISPCs, while inhibition of Wnt signaling decreases it. These results provide a proof of concept that cell intrinsic levels of Wnt signaling modulate the sensitivity of ISPCs to DNA damage and heterogeneity in Wnt activation in the stem cell niche contributes to the selection of ISPCs in the context of DNA damage.  相似文献   

17.
18.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

19.
20.
《Developmental cell》2022,57(2):166-179.e6
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号