首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor microenvironment (TME), which comprises cellular and noncellular components, is involved in the complex process of cancer development. Emerging evidence suggests that mesenchymal stem cells (MSCs), one of the vital regulators of the TME, foster tumor progression through paracrine secretion. However, the comprehensive phosphosignaling pathways that are mediated by MSC-secreting factors have not yet been fully established. In this study, we attempt to dissect the MSC-triggered mechanism in lung cancer using quantitative phosphoproteomics. A total of 1958 phosphorylation sites are identified in lung cancer cells stimulated with MSC-conditioned medium. Integrative analysis of the identified phosphoproteins and predicted kinases demonstrates that MSC-conditioned medium functionally promotes the proliferation and migration of lung cancer via the ERK/phospho-c-Fos-S374 pathway. Recent studies have reported that extracellular ATP accumulates in the TME and stimulates the P2X7R on the cancer cell membrane via purinergic signaling. We observe that ectopic ATP synthase is located on the surface of MSCs and excreted extracellular ATP into the lung cancer microenvironment to trigger the ERK/phospho-c-Fos-S374 pathway, which is consistent with these previous findings. Our results suggest that ectopic ATP synthase on the surface of MSCs releases extracellular ATP into the TME, which promotes cancer progression via activation of the ERK/phospho-c-Fos-S374 pathway.  相似文献   

2.
The spice oil components eugenol and cinnamaldehyde possess activity against both gram-positive and gram-negative bacteria, but the mechanisms of action remain obscure. In broth media at 20°C, 5 mM eugenol or 30 mM cinnamaldehyde was bactericidal (>1-log reduction in the number of CFU per milliliter in 1 h) to Listeria monocytogenes. At a concentration of 6 mM eugenol was bactericidal to Lactobacillus sakei, but treatment with 0.5 M cinnamaldehyde had no significant effect. To investigate the role of interference with energy generation in the mechanism of action, the cellular and extracellular ATP levels of cells in HEPES buffer at 20°C were measured. Treatment of nonenergized L. monocytogenes with 5 mM eugenol, 40 mM cinnamaldehyde, or 10 μM carbonyl cyanide m-chlorophenylhydrazone (CCCP) for 5 min prevented an increase in the cellular ATP concentration upon addition of glucose. Treatment of energized L. monocytogenes with 40 mM cinnamaldehyde or 10 μM CCCP caused a rapid decline in cellular ATP levels, but 5 mM eugenol had no effect on cellular ATP. Treatment of L. sakei with 10 mM eugenol prevented ATP generation by nonenergized cells and had no effect on the cellular ATP of energized cells. CCCP at a concentration of 100 μM had no significant effect on the cellular ATP of L. sakei. No significant changes in extracellular ATP were observed. Due to their rapidity, effects on energy generation clearly play a major role in the activity of eugenol and cinnamaldehyde at bactericidal concentrations. The possible mechanisms of inhibition of energy generation are inhibition of glucose uptake or utilization of glucose and effects on membrane permeability.  相似文献   

3.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   

4.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson''s disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from αSyn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human αSyn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 cre)‐mediated depletion of autophagyrelated gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in αSyn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.  相似文献   

5.
Constitutive NF‐κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF‐κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF‐κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence‐associated beta‐galactosidase (SA‐β‐gal) activity in oxidative stress‐induced senescent mouse embryonic fibroblasts as well as in etoposide‐induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1 −/ and Zmpste24 −/− mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2‐year‐old WT mice. Taken together, these results demonstrate that IKK/NF‐κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age‐related diseases.  相似文献   

6.
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio‐synthetical target for anti‐tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin‐9 and exacerbates mycobacterial infection. Administration of AG‐specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb‐infected mice or Mycobacterium marinum‐infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin‐9 with high affinity, and galectin‐9 associates with transforming growth factor β‐activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal‐regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin‐9 or inhibition of MMPs blocks AG‐induced pathological impairments in the lung, and the AG‐galectin‐9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin‐9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.  相似文献   

7.
The mtDNA copy number can affect the function of mitochondria and play an important role in the development of diseases. However, there are few studies on the mechanism of mtDNA copy number variation and its effects in IS. The specific mechanism of mtDNA copy number variation is still unclear. In this study, mtDNA copy number of 101 IS patients and 101 normal controls were detected by qRT‐PCR, the effect of D‐loop variation on mtDNA copy number of IS patients was explored. Then, a TFAM gene KD‐OE PC12 cell model was constructed to explore the effect of mtDNA copy number variation on mitochondrial function. The results showed that the mtDNA copy number level of the IS group was significantly lower than that of the normal control group (< 0.05). The relative expression of TFAM gene mRNA in the cells of the OGD/R treatment group was significantly lower than that of the control group (< 0.05). In addition, after TFAM gene knockdown and over‐expression plasmids were transfected into HEK 293T cells, mtDNA copy number and ATP production level of Sh‐TFAM transfection group was significantly decreased (< 0.05), while mtDNA copy number and ATP production level of OE‐TFAM transfected group were significantly higher than that of blank control group and OE‐ctrl negative control group (< 0.01). Our study demonstrated that mitochondrial D‐loop mutation and TFAM gene dysfunction can cause the decrease of mtDNA copy number, thus affecting the mitochondrial metabolism and function of nerve cells, participating in the pathological damage mechanism of IS.  相似文献   

8.
Noninvasive imaging atherosclerotic (AS) plaque is of great importance for early diagnosis. Recently, CD93 in MΦ was linked to atherosclerosis development. Herein, we have investigated whether CD93 in MΦ is a potential novel target for atherosclerotic plaque imaging. CD93hi and CD93lo MΦ were prepared with or without LPS stimulation, before biological activity was evaluated. A rat AS model was produced with left carotid artery clamped. Whole‐body/ex vivo phosphor autoradiography of the artery and biodistribution were investigated after incorporation of 3H‐2‐DG into CD93hi and CD93lo MΦ or after 125I‐α‐CD93 (125I‐anti‐CD93mAb) injection. The plaque tissue was subjected to CD93/CD68 immunofluorescence/immunohistochemistry staining. CD93hi and CD93lo MΦ cells were successfully prepared without significant effect on bioactivity after incorporative labelled with 3H‐2‐DG. The AS model was successfully established. Biodistribution studies showed that adoptive transfer of 3H‐2‐DG‐CD93hi MΦ or 125I‐ α‐CD93 injection resulted in accumulation of radioactivity within the atherosclerotic plaque in the clamped left carotid artery. T/NT (target/non‐target, left/right carotid artery) ratio was higher in the 3H‐2‐DG‐CD93hi MΦ adoptive transfer group than in the 3H‐2‐DG‐CD93lo MΦ group (p < .05). Plaque radioactivity in the 125I‐α‐CD93 injection group was significantly higher than in the 125I‐IgG control group (p < .01). The higher radioactivity accumulated in the clamped left carotid artery was confirmed by phosphor autoradiography. More importantly, CD93/CD68 double‐positive MΦ accumulated at the atherosclerotic plaque in 3H‐2‐DG‐CD93hi MΦ adoptive transfer group, which correlated with plaque radioactivity (r = .99, p < .01). In summary, both adoptive‐transferred 3H‐2‐DG‐labelled CD93hi MΦ and 125I‐α‐CD93 injection specifically targeted CD93 in atherosclerotic plaque. CD93 is a potential target in atherosclerotic plaque imaging.  相似文献   

9.
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource‐demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN‐β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN‐β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN‐β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria–endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN‐β in the Ifnb –/– model of Parkinson disease (PD) disrupts STAT5‐PGAM5‐Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN‐β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN‐β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.  相似文献   

10.
Doxorubicin (Dox) is a broad‐spectrum antitumour agent; however, its clinical application is impeded due to the cumulative cardiotoxicity. The present study aims to investigate the role and underlying mechanisms of microRNA‐495‐3p (miR4953p) in Dox‐induced cardiotoxicity. Herein, we found that cardiac miR4953p expression was significantly decreased in Dox‐treated hearts, and that the miR4953p agomir could prevent oxidative stress, cell apoptosis, cardiac mass loss, fibrosis and cardiac dysfunction upon Dox stimulation. In contrast, the miR4953p antagomir dramatically aggravated Dox‐induced cardiotoxicity in mice. Besides, we found that the miR4953p agomir attenuated, while the miR4953p antagomir exacerbated Dox‐induced oxidative stress and cellular injury in vitro. Mechanistically, we demonstrated that miR4953p directly bound to the 3′‐untranslational region of phosphate and tension homology deleted on chromosome ten (PTEN), downregulated PTEN expression and subsequently activated protein kinase B (PKB/AKT) pathway, and that PTEN overexpression or AKT inhibition completely abolished the cardioprotective effects of the miR4953p agomir. Our study for the first time identify miR4953p as an endogenous protectant against Dox‐induced cardiotoxicity through activating AKT pathway in vivo and in vitro.  相似文献   

11.
Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1‐ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy‐dissipating channel involved in cell death. We investigated whether aging alters FoF1‐ATP synthase self‐assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1‐ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1‐ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes’ susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1‐ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1‐ATP synthase glycation in H9c2 myoblasts recapitulated the age‐related defective FoF1‐ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1‐ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.  相似文献   

12.
13.
Aging of the auditory system is associated with the incremental production of reactive oxygen species (ROS) and the accumulation of oxidative damage in macromolecules, which contributes to cellular malfunction, compromises cell viability, and, ultimately, leads to functional decline. Cellular detoxification relies in part on the production of NADPH, which is an important cofactor for major cellular antioxidant systems. NADPH is produced principally by the housekeeping enzyme glucose‐6‐phosphate dehydrogenase (G6PD), which catalyzes the rate‐limiting step in the pentose phosphate pathway. We show here that G6PD transgenic mice (G6PD‐Tg), which show enhanced constitutive G6PD activity and NADPH production along life, have lower auditory thresholds than wild‐type mice during aging, together with preserved inner hair cell (IHC) and outer hair cell (OHC), OHC innervation, and a conserved number of synapses per IHC. Gene expression of antioxidant enzymes was higher in 3‐month‐old G6PD‐Tg mice than in wild‐type counterparts, whereas the levels of pro‐apoptotic proteins were lower. Consequently, nitration of proteins, mitochondrial damage, and TUNEL+ apoptotic cells were all lower in 9‐month‐old G6PD‐Tg than in wild‐type counterparts. Unexpectedly, G6PD overexpression triggered low‐grade inflammation that was effectively resolved in young mice, as shown by the absence of cochlear cellular damage and macrophage infiltration. Our results lead us to propose that NADPH overproduction from an early stage is an efficient mechanism to maintain the balance between the production of ROS and cellular detoxification power along aging and thus prevents hearing loss progression.  相似文献   

14.
CD44 has shown prognostic values and promising therapeutic potential in multiple human cancers; however, the effects of CD44 silencing on biological behaviors of cancer stem cells (CSCs) have not been fully understood in colorectal cancer. To examine the contribution of siRNA‐induced knockdown of CD44 to the biological features of colorectal CSCs, colorectal CSCs HCT116‐CSCs were generated, and CD44 was knocked down in HCT116‐CSCs using siRNA. The proliferation, migration and invasion of HCT116‐CSCs were measured, and apoptosis and cell‐cycle analyses were performed. The sensitivity of HCT116‐CSCs to oxaliplatin was tested, and xenograft tumor growth assay was performed to examine the role of CD44 in HCT116‐CSCs tumorigenesis in vivo. In addition, the expression of epithelial–mesenchymal transition (EMT) markers E‐cadherin, N‐cadherin and vimentin was quantified. siRNA‐induced knockdown of CD44 was found to inhibit the proliferation, migration and invasion, induce apoptosis, promote cell‐cycle arrest at the G1/G0 phase and increase the sensitivity of HCT116‐CSCs to oxaliplatin in HCT116‐CSCs, and knockdown of CD44 suppressed in vivo tumorigenesis and intrapulmonary metastasis of HCT116‐CSCs. Moreover, silencing CD44 resulted in EMT inhibition. Our findings demonstrate that siRNA‐induced CD44 knockdown suppresses the proliferation, invasion and in vivo tumorigenesis and metastasis of colorectal CSCs by inhibiting EMT.  相似文献   

15.
16.
Small molecule drug intervention for chondrocytes is a valuable method for the treatment of osteoarthritis (OA). The 4‐octyl itaconate (OI) is a cellular derivative of itaconate with sound cell permeability and transformation rate. We attempted to confirm the protective role of OI in chondrocytes and its regulatory mechanism. We used lipopolysaccharide (LPS) to induce chondrocyte inflammation injury. After the OI treatment, the secretion and mRNA expression of Il6, Il10, Mcp1 and Tnfα were detected by ELISA and qPCR. The protective effect of OI on articular cartilage was further verified in surgical destabilization of the medial meniscus model of OA. Cell death and apoptosis were evaluated based on CCK8, LDH, Typan blue staining, Annexin V and TUNEL analyses. The small interfering RNAs were used to knockout the Nrf2 gene of chondrocytes to verify the OI‐mediated Nrf2 signalling pathway. The results revealed that OI protects cells from LPS‐induced inflammatory injury and attenuates cell death and apoptosis induced by LPS. Similar protective effects were also observed on articular cartilage in mice. The OI activated Nrf2 signalling pathway and promoted the stable expression and translocation of Nrf2 into the nucleus. When the Nrf2 signalling pathway was blocked, the protective effect of OI was significantly counteracted in chondrocytes and a mouse arthritis model. Both itaconate and its derivative (i.e., OI) showed important medical effects in the treatment of OA.  相似文献   

17.
Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para‐ortholog, Smed‐exoc3, abrogates in vivo tissue homeostasis and regeneration—processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2‐deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)—a known inducer of LD formation. Smed‐exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl‐L‐carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2‐deficient ESCs and organ maintenance in Smed‐exoc3‐depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.  相似文献   

18.
Infertility is an increasingly common health issue, with rising prevalence in advanced parental age. Environmental stress has established negative effects on reproductive health, however, the impact of altering cellular metabolism and its endogenous reactive oxygen species (ROS) on fertility remains unclear. Here, we demonstrate the loss of proline dehydrogenase, the first committed step in proline catabolism, is relatively benign. In contrast, disruption of alh6, which facilitates the second step of proline catabolism by converting 1‐pyrroline‐5‐carboxylate (P5C) to glutamate, results in premature reproductive senescence, specifically in males. The premature reproductive senescence in alh6 mutant males is caused by aberrant ROS homeostasis, which can be countered by genetically limiting the first committed step of proline catabolism that functions upstream of ALH‐6 or by pharmacological treatment with antioxidants. Taken together, our work uncovers proline metabolism as a critical component of normal sperm function that can alter the rate of aging in the male reproductive system.  相似文献   

19.
20.
The interfacial tension of phase‐separated biomolecular condensates affects their fusion and multiphase organization, and yet how this important property depends on the composition and interactions of the constituent macromolecules is poorly understood. Here we use molecular dynamics simulations to determine the interfacial tension and phase equilibrium of model condensate‐forming systems. The model systems consist of binary mixtures of Lennard‐Jones particles or chains of such particles. We refer to the two components as drivers and regulators; the former has stronger self‐interactions and hence a higher critical temperature (T c) for phase separation. In previous work, we have shown that, depending on the relative strengths of driver‐regulator and driver‐driver interactions, regulators can either promote or suppress phase separation (i.e., increase or decrease T c). Here we find that the effects of regulators on T c quantitatively match the effects on interfacial tension (γ). This important finding means that, when a condensate‐forming system experiences a change in macromolecular composition or a change in intermolecular interactions (e.g., by mutation or posttranslational modification, or by variation in solvent conditions such as temperature, pH, or salt), the resulting change in T c can be used to predict the change in γ and vice versa. We also report initial results showing that disparity in intermolecular interactions drives multiphase coexistence. These findings provide much needed guidance for understanding how biomolecular condensates mediate cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号