首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2 uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2 from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal.  相似文献   

2.
短程硝化(partial nitrification, PN)是一种绿色低碳的生物脱氮创新技术,伴随厌氧氨氧化(anaerobic ammonia oxidation, Anammox)污水脱氮技术的进一步推广,短程硝化作为提供其电子受体的重要环节,已成为了污水脱氮领域的研究热点。氨氧化菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB)是该技术的核心竞争微生物,掌握这两类微生物的生态学特征,借助生态学理论和手段调控AOB淘汰NOB,提高种群的可预测性,对于实现稳定高效的短程硝化具有重要意义。本文基于生态学角度介绍了AOB和NOB基础分类、生理性能及生态位分离,重点综述了短程硝化系统中AOB和NOB的生长动力学、群落构建、环境因素和相互作用,最后对这两类微生物的未来研究重点和研究方法进行了展望,为短程硝化工艺的快速启动和稳定运行提供理论指导。  相似文献   

3.
Complete granulation of nitrifying sludge was achieved in a sequencing batch reactor. For the granular sludge, batch experiments were conducted to characterize the kinetic features of ammonia oxidizers (AOB) and nitrite oxidizers (NOB) in the granules using the respirometric method. A two-step nitrification model was established to determine the kinetic parameters of both AOB and NOB. In addition to nitrification reactions, the new model also took into account biomass maintenance and mass transfer through the granules. The yield coefficient, maximum specific growth rate, and affinity constant for ammonium for AOB were 0.21 g chemical oxygen demand (COD) g−1 N, 0.09 h−1, and 9.1 mg N L−1, respectively, whereas the corresponding values for NOB were 0.05 g COD g−1 N, 0.11 h−1, and 4.85 mg N L−1, respectively. The model developed in this study performed well in simulating the oxygen uptake rate and nitrogen conversion kinetics and in predicting the oxygen consumption of the AOB and NOB in aerobic granules.  相似文献   

4.
Single-stage nitritation–anammox combines the growth of aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AnAOB) in one reactor. The necessary compromise of their milieu conditions often leads to the growth of nitrite-oxidizing bacteria (NOB). For this study, a sequencing batch reactor (SBR) for nitritation–anammox was operated for 180 days with sewage sludge reject water (removal capacity, 0.4 kg?N?m?3?day?1). The growth of NOB was favored by enhanced oxygen supply rather than extended aerobic phases. Suspended-type biomass from this SBR was taken regularly and sieved into three size fractions (all of them <1,000 μm). Batch experiments as well as fluorescence in situ hybridization were performed to study the distribution and activity of AnAOB, AOB, and NOB within those size fractions. Both the measured conversion rates and detected abundances decreased with increasing size fraction. The highest anammox conversion rates (15 g NH4 +–N per kilogram VSS per hour) and the highest abundances of Brocadia fulgida were found in the medium size fraction (100–315 μm). The batch experiments proved to be accurate tools for the monitoring of multiple processes in the reactor. The results were representative for reactor performance during the 6 months of reactor operation.  相似文献   

5.
Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 ± 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2 /NH4 + ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m3 day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.  相似文献   

6.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

7.
In this study, the variation of biomass, kinetic parameters, and stoichiometric parameters for ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in TNCU3 process were explored at different aerobic hydraulic retention time (AHRT). The results indicated that the growth rate constants of AOB were 0.92, 0.88, and 0.95 days?1, respectively, meanwhile, those of NOB were 2.58 1.41, and 1.40 days?1, respectively, when AHRT was 5, 6, and 7 h. The lysis rate constants for AOB and NOB were 0.13 and 0.17 days?1, respectively. When AHRT was 5, 6, and 7 h, the yield coefficients of AOB were 0.20, 0.23, and 0.28 g COD g?1 N, respectively, meanwhile those of NOB were 0.23, 0.19, and 0.22 g COD g?1 N, respectively. The average percentage of AOB was 0.44, 0.61, and 0.64%, respectively, while that of NOB was 0.46, 0.61, and 0.74%, respectively. The relation between the biomass percentage of AOB and AHRT was in a good agreement with first type hyperbolic curve. The relation between the biomass percentage of NOB and AHRT was in a good agreement with seven types of curve including simple exponential curve, power exponential curve, and first type hyperbolic curve etc. When the AHRT increased from 5 to 7 h, the removal efficiency of NH4 +–N increased from 80.2 to 94.8%, or by 14.6%. Meanwhile, the removal efficiency of total nitrogen increased from 63.6 to 70.9%, or by 7.3%.  相似文献   

8.
The sustainability of autotrophic granular system performing partial nitritation and anaerobic ammonium oxidation (anammox) for complete nitrogen removal is impaired by the production of nitrous oxide (N2O). A systematic analysis of the pathways and affecting parameters is, therefore, required for developing N 2O mitigation strategies. To this end, a mathematical model capable of describing different N 2O production pathways was defined in this study by synthesizing relevant mechanisms of ammonium-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, heterotrophic bacteria (HB), and anammox bacteria. With the model validity reliably tested and verified using two independent sets of experimental data from two different autotrophic nitrogen removal biofilm/granular systems, the defined model was applied to reveal the underlying mechanisms of N 2O production in the granular structure as well as the impacts of operating conditions on N 2O production. The results show that: (a) in the aerobic zone close to the granule surface where AOB contribute to N 2O production through both the AOB denitrification pathway and the NH 2OH pathway, the co-occurring HB consume N 2O produced by AOB but indirectly enhance the N 2O production by providing NO from NO 2 reduction for the NH 2OH pathway, (b) the inner anoxic zone of granules with the dominance of anammox bacteria acts as a sink for NO 2 diffusing from the outer aerobic zone and, therefore, reduces N 2O production from the AOB denitrification pathway, (c) operating parameters including bulk DO, influent NH 4 +, and granule size affect the N 2O production in the granules mainly by regulating the NH 2OH pathway of AOB, accounting for 34–58% of N 2O turnover, and (d) the competition between the NH 2OH pathway and heterotrophic denitrification for nitric oxide leads to the positive role of HB in reducing N 2O production in the autotrophic nitrogen removal granules, which could be further enhanced in the presence of a proper level of influent organics.  相似文献   

9.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

10.
The coupled system of partial nitrification and anaerobic ammonium oxidation (Anammox) is efficient in nitrogen removal from wastewater. In this study, the effect of different oxygen concentrations on partial nitrification performance with a sequencing batch reactor (SBR) was investigated. Results indicate that, partial nitrification of landfill leachate could be successfully achieved under the 1.0–2.0 mg L−1 dissolved oxygen (DO) condition after 118 d long-term operation, and that the effluent is suitable for an Anammox reactor. Further decreasing or increasing the DO concentration, however, would lead to a decay of nitrification performance. Additionally, the MLSS concentration in the reactor increased with increasing DO concentration. Respirometric assays suggest that low DO conditions (<2 mg L−1) favor the ammonia-oxidizing bacteria (AOB) and significantly inhibit nitrite oxidizing bacteria (NOB) and aerobic heterotrophic bacteria (AHB); whereas high DO conditions (>3 mg L−1) allow AHB to dominate and significantly inhibit AOB. Therefore, the optimal condition for partial nitrification of landfill leachate is 1.0–2.0 mg L−1 DO concentration.  相似文献   

11.
To reveal the succession procedure of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) community structure in sequencing biofilm batch reactor (SBBR), the molecular biological techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and real-time PCR were applied. DGGE showed that the structural diversity of the bacterial community increased during the biofilm formation period, and some kinds of populations had been highly preponderant consistently. The results of cloning and sequencing revealed that Nitrosomonas was the dominant species. The real-time PCR analysis indicated that the amount of the AOB increased significantly after the cultivation period, and the NOB gradually decreased. The AOB content on the 25th day was 17 times that of the 6th day. It also showed the biofilm formed successfully with accumulating nitrite and prepared to achieve the achievement of simultaneous nitrification and denitrification in SBBR. Furthermore, the ammonia-oxidizing rate was in correspondence with the NH4 +-N removal efficiency.  相似文献   

12.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that “Brocadia”-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 μm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH4+ and NO2 consumption rates decreased from 0.68 and 0.64 μmol cm−2 h−1 at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 μmol cm−2 h−1 at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH4+ and NO2 and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O2 or organic compounds, which consequently established suitable microenvironments for anammox bacteria.  相似文献   

13.
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.  相似文献   

14.
To achieve stable partial nitrification, activated sludge from a wastewater treatment plant using free ammonia (FA) inhibition was immobilized in a polyvinyl alcohol carrier. After FA treatment at 16.44 mg L−1 for 1 day, due to the increased growth rate gap between ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), AOB enrichment and NOB inhibition were achieved within 12 days, with AOB and NOB accounting for 65.61 and 0.05%, respectively. Subsequently, with dissolved oxygen concentrations of 4−5 mg L−1, pH of 7.6–7.8 and temperature of 25 ± 1 °C, the immobilized carrier made of activated sludge achieved more than 90% and more than 86% of nitrite accumulation rate at the influent ammonia concentration of 90−110 mg L−1 and 35−50 mg L−1, respectively. After 50 days operation, the NOB content was 0.10%, indicating the immobilized carrier provided favorable conditions for maintaining the low NOB content. Furthermore, due to the low NOB content in the inoculum and the oxygen-limited environment formed by the increase in the AOB numbers in the carrier, immobilized carrier with different initial biomass (1, 2.5 and 5%) can achieve stable partial nitrification.  相似文献   

15.

The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO3 , NO2 , and NH4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 108 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  相似文献   

16.
A compact suspended carrier biofilm reactor (SCBR) was developed for simultaneous nitrification and denitrification (SND) in a single reactor and the performance of nutrient removal was investigated. Microbial community structure response to different ratio of carbon to nitrogen (C/N) was determined by denaturing gel gradient electrophoresis (DGGE) profiles of 16S rDNA V3 region and amoA gene amplifications. In addition, the population dynamics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were estimated by fluorescence in situ hybridization (FISH) with 16S rDNA-targeted oligonucleotide probes. Results showed that the compact SCBR was efficient in nutrient removal with CODCr removal efficiency over 90% and SND efficiency (ESND) about 83.3%. The diversity of microbial community structure was positively correlated with C/N ratio, while the three communities of amoA gene were relativity homogenous. The population of nitrifiers was in inverse proportions to C/N ratio with the average fraction of AOB and NOB to all bacteria 5.4, 4.8, 3.1% and 4.6, 3.5, 2.7% respectively as C/N ratio changing from 3:1, 5:1 to 10:1. Therefore we could reach a conclusion that the compact SCBR was practical to treat municipal wastewater and the shift of microbial community monitored by molecular technologies could offer guidance to the process optimization in engineering.  相似文献   

17.

Excess inorganic nitrogen in water poses a severe threat to enviroment. Removal of inorganic nitrogen by heterotrophic nitrifying–aerobic denitrifying microorganism is supposed to be a promising and applicable technology only if the removal rate can be maintained sufficiently high in real wastewater under various conditions, such as high concentration of salt and wide range of different nitrogen concentrations. Here, a new heterotrophic nitrifying–aerobic denitrifying bacterium was isolated and named as Pseudomonas mendocina TJPU04, which removes NH4+-N, NO3-N and NO2-N with average rate of 4.69, 5.60, 4.99 mg/L/h, respectively. It also maintains high nitrogen removal efficiency over a wide range of nitrogen concentrations. When concentration of NH4+-N, NO3-N and NO2-N was up to 150, 150 and 50 mg/L, 98%, 93%, and 100% removal efficiency could be obtained, respectively, after 30-h incubation under sterile condition. When it was applied under non-sterile condition, the ammonia removal efficiency was slightly lower than that under sterile condition. However, the nitrate and nitrite removal efficiencies under non-sterile condition were significantly higher than those under sterile condition. Strain TJPU04 also showed efficient nitrogen removal performance in the presence of high concentration of salt and nitrogen. In addition, the removal efficiencies of NH4+-N, NO3-N and TN in real wastewater were 91%, 52%, and 75%, respectively. These results suggest that strain TJPU04 is a promising candidate for efficient removal of inorganic nitrogen in wastewater treatment.

  相似文献   

18.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

19.
Although biological nitrogen removal via nitrite is recognized as one of the cost-effective and sustainable biological nitrogen removal processes, nitrite accumulation has proven difficult to achieve in continuous processes treating low-strength nitrogenous wastewater. Partial nitrification to nitrite was achieved and maintained in a lab-scale completely stirred tank reactor (CSTR) treating real domestic wastewater. During the start-up period, sludge with ammonia-oxidizing bacteria (AOB) but no nitrite-oxidizing bacteria (NOB) was obtained by batch operation with aeration time control. The nitrifying sludge with the dominance of AOB was then directly switched into continuous operation. It was demonstrated that partial nitrification to nitrite in the continuous system could be repeatedly and reliably achieved using this start-up strategy. The ratio of dissolved oxygen to ammonium loading rate (DO/ALR) was critical to maintain high ammonium removal efficiency and nitrite accumulation ratio. Over 85% of nitrite accumulation ratio and more than 95% of ammonium removal efficiency were achieved at DO/ALR ratios in an optimal range of 4.0–6.0 mg O2/g N d, even under the disturbances of ammonium loading rate. Microbial population shift was investigated, and fluorescence in situ hybridization analysis indicated that AOB were the dominant nitrifying bacteria over NOB when stable partial nitrification was established.  相似文献   

20.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号